
Springer Nature 2021 LATEX template

RTAMT- Runtime Robustness Monitors with Application to

CPS and Robotics

Tomoya Yamaguchi1, Bardh Hoxha1 and Dejan Ničković2

1TRINA, Toyota Motor NA R&D, 1555 Woodridge Ave, Ann Arbor, 48105, Michigan, U.S.
2AIT Austrian Institute of Technology, Giefinggasse 4,Vienna, 1210, Vienna, Austria.

Contributing authors: tomoya.yamaguchi@toyota.com; bardh.hoxha@toyota.com;
dejan.nickovic@ait.ac.at;

Abstract

In this paper, we present Real-Time Analog Monitoring Tool (RTAMT), a tool for quantitative mon-
itoring of Signal Temporal Logic (STL) specifications. The library implements a flexible architecture
that supports: (1) various environments connected by an Application Programming Interface (API) in
Python, (2) various flavors of temporal logic specification and robustness notion such as STL, including
an interface-aware variant that distinguishes between input and output variables, and (3) discrete-time
and dense-time interpretation of STL with generation of online and offline monitors. We specifically
focus on robotics and Cyber-Physical Systems (CPSs) applications, showing how to integrate RTAMT
with (1) the Robot Operating System (ROS) and (2) MATLAB/Simulink environments. We evaluate
the tool by demonstrating several use scenarios involving service robotic and avionic applications.

Keywords: runtime verification, formal specifications, robotics, cyber-physical systems

1 Introduction

Cyber-Physical Systems (CPSs) [1–3] are sys-
tems which integrate both cyber and physical
components, operating in complex environments
and increasingly featuring autonomous decision-
making capabilities enabled by machine learning.
Distributed robotic applications are typical exam-
ples of autonomous CPS used in contexts ranging
from collaborative manufacturing environments to
assisted living. Other examples of CPSs include
smart buildings that learn their practitioner’s pro-
file and accordingly optimize heating strategies,
autonomous vehicles that are able to drive without
human intervention or medical devices that mod-
ify a therapy according to the patient’s needs. To
address complexity challenges, various frameworks

have been proposed to facilitate development. For
instance, Robot Operating System (ROS) [4] pro-
vides a meta-operating system with tools and
libraries to help engineers develop robotic appli-
cations while MATLAB/Simulink® enables the
modeling of CPS control applications.

Under these circumstances, Verification and
Validation (V&V) remains a bottleneck as state-
of-the-art techniques do not scale to this level
of complexity, making static safety assurance a
very costly and time-demanding, if not impossi-
ble, activity. Runtime Assurance (RTA) [5], an
alternative approach for ensuring the safe opera-
tion of robotic and other sophisticated CPSs, is
used when static verification is not possible. RTA
allows the use of unverified components in a sys-
tem that implements a safe fallback mechanism for

1

Springer Nature 2021 LATEX template

2 RTAMT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t

0.8

0.9

1.0

1.1

1.2

1.3

1.4

f
(t

)

+0.048

(a) Satisfied

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t

0.8

0.9

1.0

1.1

1.2

1.3

1.4

-0.198

(b) Violated

Fig. 1: Two typical PID controller behaviors evaluated against the specification ”it is always the case
that f(t) is smaller or equal to 1.1” (G (f(t) ≤ 1.1)) in STL: apart from the satisfied/violated qualitative
verdict, the robustness semantics provides additional quantitative feedback (a) satisfied with robustness =
+0.048 (b) violated with robustness = −0.198.

(1) detecting anomalies during real-time system
operations and (2) invoking a recovery mechanism
that can bring the system back to its safe (and
possibly degraded) operation. Runtime verifica-
tion provides a reliable, rigorous and systematic
way for finding violation in system executions
and consequently represents a viable solution for
the monitoring part of an RTA entity. Runtime
verification and assurance techniques must sup-
port seamless integration in common design and
operation environments.

Formal specifications play an important role
in runtime verification and enable to precisely
express intended system properties. Signal Tem-
poral Logic (STL) [6] is a formal specification
language that is used to describe CPS require-
ments. STL can provide quantitative robustness
semantics, which is used to measure to which
extent an observed behavior satisfies or violates
a given specification. For instance, Fig. 1 shows
two typical PID controller behaviors. The STL
specification requires the observed behavior f(t)
to always remain below 1.1. The first behavior
(Fig. 1 (a)) satisfies its specification with the pos-
itive robustness +0.048. This value corresponds
to the closest distance between f(t) and the
1.1 threshold. In contrast, the second behavior
(Fig. 1 (b)) violates that same specification with
negative robustness −0.198. This value represents
the largest amount that f(t) goes above 1.1. We
observe that the real-valued evaluation contrasts

the classical satisfied/violated answer that we typ-
ically get from reasoning with the qualitative
interpretation of specification languages.

To address the above V&V challenges,
we present Real-Time Analog Monitoring Tool
(RTAMT)1, a versatile library for generating mon-
itors from STL specifications. The contributions
of this work are as follows:

1. We integrate RTAMT into multiple design and
operational environments with its Application
Programming Interface (API) – the Python
library’s API allows for this integration. We
demonstrate the integration of RTAMT with
ROS2 and MATLAB/Simulink.

2. The tool facilitates temporal logic-based spec-
ifications and quantitative/robustness notions
such as STL. We allow integration of var-
ious syntactic and semantic variants of the
language. For instance, the tool supports stan-
dard STL and its Interface-Aware extension
(IA-STL) [7]. We also provide a tool library
to support implementing one’s own temporal
logic-based specification language.

3. We implement both offline and online monitors
with either discrete-time or dense-time inter-
pretation of the behaviors and the specification
language.

1RTAMT:https://github.com/nickovic/rtamt
2RTAMT4ROS:https://github.com/nickovic/rtamt4ros

https://github.com/nickovic/rtamt
https://github.com/nickovic/rtamt4ros

Springer Nature 2021 LATEX template

RTAMT 3

This work is an extended version of the con-
ference paper [8]. We briefly summarize the addi-
tional content that is provided in this paper,
compared to its conference variant:

• A detailed presentation of the library’s architec-
ture.

• An extensive description of how RTAMT can be
integrated to ROS and MATLAB/Simulink®.

• A comprehensive evaluation section with addi-
tional experiments and case studies.

• More extensive and complete related work
section.

The layout of the paper is as follows. First,
we present definitions of STL and its extensions
and sketch the monitoring procedures in Sec. 2;
we then give the RTAMT architecture in Sec. 3,
its API in Sec. 4, and its library in Sec. 5. These
enable the use of specification-based runtime veri-
fication and assurance methods. In Sec. 6, we give
our detailed evaluation of the tool and case studies
in robotic applications based on ROS and MAT-
LAB/Simulink. We then present related work in
Sec. 7, and finally conclude the paper in Sec. 8.

2 Monitoring Temporal Logic
Specifications

RTAMT is a tool for the automatic generation of
monitors from declarative specifications. Given an
input signal in the form of a sequence of (time,
value) pairs and a specification, RTAMT com-
putes at different points in time how robust the
observed signal is compared to the specification,
i.e. how far is it from satisfying or violating it.
STL is utilized as the specification language of
choice in RTAMT, which supports discrete-time
and dense-time monitors for usage in a wide array
of applications.

In Sec. 2.1, we provide an overview of the
syntax of STL with the standard future tempo-
ral operators and more specialized past temporal
operators, which are more suitable for online mon-
itoring requirements. With a specification that
includes only past temporal operators, the robust-
ness of a signal with respect to the specification
may be evaluated at the current timestep and does
not depend on future observations. In addition, we
provide semantics that support discrete and dense

temporal models. In Sec. 2.2 we present a pastifi-
cation procedure that enables translation of future
temporal operators to past temporal operators.
Finally, in Sec. 2.3 we introduce the interface-
aware extension of STL (IA-STL) that distin-
guishes between input and output variables. We
use IA-STL to demonstrate how the library can be
extended with other specification formalisms such
as temporal operators and additional robustness
metrics.

2.1 Signal Temporal Logic

Signal Temporal Logic (STL) extends Linear Tem-
poral Logic (LTL) with real-time temporal oper-
ators and numerical predicates defined over real-
valued behaviors. We interpret STL over finite
signals that we represent as finite sequences of
(time, value) pairs. Let X = {x1, . . . , xn} be a set
of real-valued variables. A valuation v : X → R
For x ∈ X maps a variable x to a real value. A sig-
nal w defined over X is a function T → RX that
gives the value w(t) of the variables in X at time
t ∈ T, where T is a finite interval [0, d). A signal w
can be also seen as a vector of real-valued signals
wx : T→ R associated to variables x ∈ X. Given
two signals w1 : T→ Rn1 and w2 : T→ Rn2 , we
define their composition w1 || w2 as the function
T→ Rn1+n2 , with the expected meaning. Given a
subset Y ⊆ X of variables, we define the projec-
tion wY of the signal w to Y as the composition
||y∈Y wy.

We can have two interpretations of signals –
discrete- and dense-time. For the discrete-time
interpretation of signals, we assume that the sig-
nal is periodically sampled with some period ∆. It
follows that every sample can be uniquely indexed
with an integer i corresponding to the sampling
time i∆. Consequently, the time domain T =
[0, d] is an interval of integers with d ∈ N. For
the dense-time interpretation, we assume that the
time domain T = [0, d] is an interval of reals with
d ∈ Q>0. In contrast to the discrete-time interpre-
tation, the changes in the dense-time signal can
happen anywhere in the interval [0, d]. While we
assume signals with finite variability, we do not
impose a bound on the number of changes in any
unit time.

Both discrete-time and dense-time signals
can be represented with a finite sequence
(t0, v0), . . . , (tn, vn) of (timestamp, valuation)

Springer Nature 2021 LATEX template

4 RTAMT

(a) ρ(G [a, b]ϕ,w, t) = inf
t′∈[t+a,t+b)

ρ(ϕ,w, t′) (b) ρ(H [a,b] ϕ,w, t) = inf
t′∈(t−a,t−b]

ρ(ϕ,w, t′)

Fig. 2: Semantics for the future timed operator G (globally) and the past timed operator H (historically):
Input ϕ is described as Booleans for simplicity. The difference is (a) t′ ∈ [t + a, t + b] in G [a,b] refers to
future points in time with respect to the current time t, In contrast, (b) t′ ∈ [t− a, t− b] in H [a,b] refers
to past points in time with respect to the current time t,

pairs such that t0 = 0 and ∀i ∈ [1, n] : ti ∈ T and
ti−1 < ti, vi is a valuation over X and tn = d. For
the dense-time interpretation of the specification
language, we assume that signals are piecewise-
constant, i.e. for all t ∈ [ti, ti+1) and x ∈ X,
w(x, t) = w(x, ti).

The basic building block in STL is a predicate
f(Y) > c, where f(Y) is a term with Y ⊆ X,
f : RY → R is an interpreted function and c is a
real number. The syntax of an STL formula ϕ is
defined recursively with the following grammar,

Definition 1 (Syntax of STL)

ϕ := f(Y) > c | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U Iϕ2 | ϕ1 S Iϕ2

where Y ⊆ X, I is an interval of the form [a, b] or
[a,∞) where a ≤ b are rational numbers.

The operators for disjunction (∨) and negation
(¬) are defined in the usual way. U (until) and S
(since) are temporal operators. The syntax of STL
is very similar to that of LTL, with the addition
of numerical predicates of the form f(Y) > c and
intervals I that bound the scope of the temporal
operators.

Given an STL formula ϕ, a signal w and a time
t ∈ T, we define the quantitative (or robustness)
semantics ρ(ϕ,w, t) as follows:

Definition 2 (Quantitative Semantics of STL)

ρ(f(Y) > c,w, t) =f(wY (t))− c
ρ(¬ϕ,w, t) =− ρ(ϕ,w, t)

ρ(ϕ1 ∨ ϕ2, w, t) = max (ρ(ϕ1, w, t), ρ(ϕ2, w, t))

ρ(ϕ1 U Iϕ2, w, t) =

sup
t′∈t⊕I∩T

min

(
ρ(ϕ2, w, t

′), inf
t′′∈[t,t′)

ρ(ϕ1, w, t
′′)

)
ρ(ϕ1 S Iϕ2, w, t) =

sup
t′∈t′	I∩T

min

(
ρ(ϕ2, w, t

′), inf
t′′∈(t′,t]

ρ(ϕ1, w, t
′′)

)
where min(P) and max(P) denote the smallest and
the largest elements in the set P , while inf(P) and
sup(P) denote the infinum (greatest lower bound) and
the supremum (least upper bound) of P .

The quantitative semantics from Definition 2,
intuitively measures how much should the signal
be modified in order to satisfy or violate the spec-
ification. The measured value is also known as
spatial robustness. It can be seen as (an approx-
imation of) the distance between the observed
behavior and the boundary of the set representing
all behaviors that satisfy the property.

We observe that the U (Until) and S (Since)
operators may be utilized to derive other temporal
operators:
Future Temporal Operators

finally F Iϕ ≡ trueU Iϕ
globally G Iϕ ≡ ¬F I¬ϕ
next Xϕ ≡ falseU [0,∞)ϕ

Past Temporal Operators

once O Iϕ ≡ trueS Iϕ
historically H Iϕ ≡ ¬O I¬ϕ
previous Yϕ ≡ falseS [0,∞)ϕ
rise ↑ ϕ ≡ Y¬ϕ ∧ ϕ
fall ↓ ϕ ≡ Yϕ ∧ ¬ϕ

Springer Nature 2021 LATEX template

RTAMT 5

Intuitively, a signal wY (t) satisfies a formula
ϕ1 U [a,b]ϕ2 at time t if there exists a time t′ ∈
[t + a, t + b] such that w satisfies ϕ2 and for all
the times before then w satisfies ϕ1. Since the
robustness evaluation needs to consider the signal
at future timesteps, U and derived operators F ,
G , X are categorized as future operators. Simi-
larly, a signal wY (t) satisfies a formula ϕ1 S [a,b]ϕ2

at time t if there exists a time t′ ∈ [t − a, t − b]
such that w satisfies ϕ2 and for all the times
after then w satisfies ϕ1. S and derived opera-
tors O , H , Y are referred to as past operators.
The intuition behind these operators is presented
visually in Figs. 2a and 2b. We note that discrete-
time quantitative semantics of STL are evaluated
only at sampled instances. Past temporal opera-
tors are more suitable for monitoring applications
than future temporal operators because robust-
ness evaluation relies only on current and past
time valuations of a signal.

We note that Definition 2 can be used for both
the discrete and dense time interpretation of the
logic, depending on whether t, t′ and t′′ are quan-
tified over naturals or reals. We also observe that
the next X , previous Y , rise ↑ and fall ↓ oper-
ators are only meaningful for the discrete-time
interpretation of STL.

In the following, we consider two subsets of
STL:

• Bounded-Future Signal Temporal Logic (bfSTL)
where the unbounded time intervals are not per-
mitted. That is, the U I operator has a defined
interval [a, b] where a and b are in R+.

• Past Signal Temporal Logic (pSTL) that only
supports past-operators.

To facilitate the online monitoring of bounded
future properties in RTAMT, we use a pastifi-
cation procedure, which takes a bfSTL formula
and generates an equi-satisfiable pSTL formula for
monitoring purposes.

2.2 Pastification from bfSTL to
pSTL

Monitoring specifications with future temporal
operators is challenging because the evaluation at
time index t may depend on the observed inputs
at some future time indices t′ > t. bfSTL specifi-
cations have a bounded future horizon h that can

be syntactically computed from the formula struc-
ture. For such specifications, the online monitoring
challenge can be addressed by postponing the for-
mula evaluation from time index t to the end of
the (bounded) horizon t+ h, where all the inputs
necessary for computing the robustness degree are
available. In this section, we briefly sketch this
procedure, called pastification [9, 10].

We first define the temporal depth H(ϕ) of ϕ as
the syntax-dependent upper bound on the actual
depth of the specification. It corresponds to the
maximum time in the future that is relevant for
the evaluation of the specification now, which is
inductively computed as follows3:

Definition 3 (Temporal Depth)

H(f(Y) > c) = 0
H(¬ϕ) = H(ϕ)
H(ϕ1 ∨ ϕ2) = max{H(ϕ1), H(ϕ2)}
H(Xϕ) = H(ϕ) + 1
H(ϕ1 U [a,b]ϕ2) = b+ max{H(ϕ1), H(ϕ2)}

In the next step, we define the pastification
operation Π on the STL formula ϕ with past
and bounded future and its bounded horizon d =
H(ϕ). To enable this transformation of specifica-
tions, we define a new precedes P [a,b] auxiliary
temporal operator, which is essentially implement-
ing the bounded until operator interpreted from
the end of the bounded formula horizon:

ρ(ϕ1P [a,b]ϕ2, w, t) =

sup
t′∈[t−b+a,t]

min

(
ρ(ϕ2, w, t

′), inf
t′′∈(t−b,t′]

ρ(ϕ1, w, t
′′)

)
The pastification procedure essentially takes a

bounded future formula ϕ with horizon H(ϕ) and
gives the recipe how to shift the evaluation of that
formula from time t to time t + H(ϕ), when all
the information required for the evaluation of the
formula becomes available.

3The pastification of the X operator is relevant only for the
discrete-time interpretation of the specification language.

Springer Nature 2021 LATEX template

6 RTAMT

Definition 4 (Pastification Operation)

Π(f(Y) > c, d) = O [d,d](f(Y) > c)

Π(¬ϕ, d) = ¬Π(ϕ, d)
Π(ϕ1 ∨ ϕ2, d) = Π(ϕ1, d) ∨Π(ϕ2, d)
Π(Xϕ, d) = Π(ϕ, d− 1)
Π(F [a,b]ϕ, d) = O [0,b−a]Π(ϕ, d− b)
Π(ϕ1 U [a,b]ϕ2, d) ↔ Π(ϕ1, d− b)P [a,b]Π(ϕ2, d− b)

Formally, we say that for an arbitrary bfSTL
formula ϕ, signal w and time index t ∈ N,
ρ(ϕ,w, t) = ρ(Π(ϕ), w, h(ϕ)).

Example 1 The pastification of the bfSTL specifi-
cation ϕ ≡ (req ≥ 3) → F [0,5](gnt ≥ 3) from
the running example corresponds to the pSTLformula
Π(ϕ) ≡ O [5,5](req ≥ 3)→ O [0,5](gnt ≥ 3).

2.3 Interface-Aware STL

Interface-aware Signal Temporal Logic (IA-STL)
extends STL by classifying variables appearing in
the specification as input or output variables [7].
This simple addition to the specification language
is fundamental to reasoning about open systems
and allows their specification as input/output
relations, rather than sets of correct execution
traces. IA-STL allows questions that cannot be
formulated with the general STL formulas:

• How good is the reaction of the system to a
given input signal with respect to its require-
ments?

• Does a concrete input signal exercise the sys-
tem in any meaningful way with respect to its
requirements?

IA-STL admits several semantic interpreta-
tions, one for each question that the interpretation
shall answer. There are two particularly useful
IA-STL semantics:

Output robustness measures how robust a speci-
fication is relative to the set output signals. The
real-valued (positive or negative) robustness value
(positive or negative) indicates how much the sig-
nal can be perturbed and still satisfy/violate the
specification. When (plus or minus) infinity, the
output robustness indicates that the specification
is vacuously satisfied or not satisfied by the given
input signal.
Input vacuity represents the level of vacuity of the
specification with respect to a given input signal.

When a positive or negative real, it indicates how
much one can change the input without violat-
ing or satisfying the specification. When equal to
0, the input vacuity indicates the specification is
non-vacuously exercised by the input signal. Intu-
itively, it means that the specification is not robust
to even a slightest change in the inputs because it
might induce an output behavior that affects the
robustness in an arbitrary manner.

We illustrate these two notions of robustness
in Fig. 3, which depicts four simple request-
grant behaviors that we evaluate against the IA-
STL bounded response property G (req ≥ 3 →
F [0,5]gnt ≥ 3). The first behavior (Fig. 3a) sat-
isfies the specification with output robustness +3
because the gnt signal is 3 units away from the
threshold in the interval of interest. Since the spec-
ification is not vacuously satisfied by the input req,
the input vacuity equals to 0. The second behavior
(Fig. 3b) satisfies the specification with robust-
ness +1, but with output robustness +∞ because
the request is never issued and hence the speci-
fication is vacuously satisfied. The input vacuity
also equals to +1 because changing the values of
the input req by any amount smaller than 1 would
still guarantee vacuous satisfaction of the specifi-
cation. The third behavior (Fig. 3c) violates the
specification with output robustness −2, corre-
sponding to the distance of gnt from the threshold.
Finally, the fourth behavior (Fig. 3d) also violates
the specification with robustness −1, but with
output robustness −2. The classical robustness
corresponds to the distance between the input req
and the threshold – intuitively, the least expensive
way to achieve the satisfaction of the specifica-
tion is to decrease the amplitude of the input until
the specification is vacuously satisfied. However,
when measuring output robustness, the input is
fixed and cannot change, thus yielding the value
of −2, which corresponds to the distance between
the output gnt and the threshold. To enable out-
put robustness and input vacuity, we first lift
the notion of robustness ρ, to the more general
notion of U -robustness relative to V , denoted by
ρVU , where U ⊆ Y ⊆ X and V ⊆ Y ⊆ X,
and U ∩ V = ∅. We define the robust semantics
ρVU (ϕ,w, t) by induction, where the only differ-
ence from the definition of ρ(ϕ,w, t) is the case of

Springer Nature 2021 LATEX template

RTAMT 7

0 2 4 6 8 10
0

1

2

3

4

5

6

7

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

req

gnt

(b)

0 2 4 6 8 10
t

0

1

2

3

4

5

6

7

(c)

0 2 4 6 8 10
t

0

1

2

3

4

5

6

7

(d)

Fig. 3: Examples of IA-STL evaluating request-grant signals with the formula G (req ≥ 3→ F [0,5]gnt ≥
3): A request is issued whenever the value of the signal req is greater or equal to 3. Similarly, the grant
is issued whenever the value of the signal gnt is greater or equal to 3. The specification requires that
every request is eventually followed within 5 time units by a grant. The sub-figures illustrate 4 different
behaviors where the specification is (a) satisfied with with robustness 3, output robustness +3, and input
vacuity 0, (b) vacuously satisfied with that (the request is never issued) with robustness +1, output
robustness +∞, and input vacuity +1, (c) does not satisfy that with robustness −2 and output robustness
−2, (d) also does not satisfy that with robustness −1 and output robustness −2.

numeric predicates:

ρVU (f(Y) > c,w, t)

=

0 if Y 6⊆ U ∪ V
fwY (t))− c else if Y 6⊆ V
sign(f(wY (t))− c) · ∞ otherwise

where for all a ∈ R, sign(a) · ∞ = +∞ if a > 0,
−∞ otherwise. Intuitively, ρ(ϕ,w, t) measures the
robustness of a specification to the signals in U
relative to the signals in V . Hence, we use the
classical robustness computation to compute pred-
icates over variables in U , but we treat predicates
over variables in V and Y \(U ∪V) differently. The

predicates over variables in V are given qualita-
tive evaluation, resulting in robustness that can be
either +∞ or −∞. The rationale is that we con-
sider signals in V to be fixed and that a change
resulting in switching the satisfaction or the viola-
tion of the predicates results in an infinite cost. On
the other hand, we consider signals in Y \(U ∪ V)
to be uncontrollable and that even an infinitesi-
mally small change could result in switching the
satisfaction status of the predicate.

We are now ready to define the syntax and
semantics of IA-STL.

Definition 5 (Interface-Aware Signal Temporal
Logic) An Interface-Aware Signal Temporal Logic

Springer Nature 2021 LATEX template

8 RTAMT

Fig. 4: Overview of RTAMT.

(IA-STL) specification over X is a tuple (XU , XV , ϕ),
where XU , XV ⊆ X, XU ∩ XV = ∅ and ϕ is a STL
formula.

We define output robustness and input vacuity
using the notion of relative robustness:

Output robustness that is denoted µ, as the XV -
robustness relative to X\XV .
Input vacuity that is denoted ν, the
XU -robustness relative to ∅.

3 Architecture

In this section, we introduce the overview of the
RTAMT architecture for specification-based mon-
itoring. Fig. 4 depicts the overview of RTAMT.
The core module of RTAMT API is developed in
Python4. for several reasons:

1. Facilitates handling common input data for-
mats such as CSV, Excel, or SQL server.

2. Easy integration with ROS, a well-known mid-
dleware in the robotics domain.

3. Better connectivity with MATLAB/Simulink,
a well-known Model Based Development
(MBD) platform in the control design domain.

4. Sophisticated software package system: Python
Package Index (PyPI) enables smooth distribu-
tion.

5. Popularity and thereby increasing user base.

4Both Python 2.x and 3.x are supported for ROS and general
purposes.

For practitioners, we provide a flexible and
modular library behind the API that enables them
to implement their own specification language
based on LTL/STL. Fig. 5 shows the architec-
ture of the RTAMT Library in a class diagram.
The cores of the library are the syntax layer,
which manages specification with lexer, parser,
and Abstract Syntax Tree (AST), and the seman-
tic layer, which calculates robustness from given
trajectories with specific semantics. Since Python
is an interpreted language, there is a natural trade-
off between computing speed and ease of program-
ming. For this reason, we implement the syntax
layer in Python, because the layers are executed
only one time in the parse phase, and we priori-
tize flexibility rather than computing efficiency. In
contrast to the syntax layer, the semantic layer is
called upon every monitoring update. Because we
expect real-time monitoring, we can exploit not
only Python for rapid prototyping, but also C++
for fast computing in this layer. Next we explain
each layer in detail.

3.1 Syntax Layer

We first utilize ANTLR4 [11] lexer and parser
to parse a given specification. ANTLR4 pro-
vides a flexible, easy-to-use platform for lexer and
parser instantiated with a tool-specific setting file
ANTLR4 grammar. StlAst and StlAstVisitor

are instances of the RTAMT AST and visitor class
in STL case as the core of this layer and the link
to the next semantics layer.

Another functionality in this layer is handling
any syntactic manipulations of the specification
parse trees, including the pastification procedure
from Sec. 2.2. In that case, we translate the
bfSTL formula φ into an equi-satisfiable pSTL for-
mula ψ, which uses only past temporal operators.
The actual pastification parser StlPastifier is
extended from StlAstVisitor, which provides
the parse method for translating the specifica-
tion text into an internal representation. This
pastification two-step process is depicted in Fig. 6.

3.2 Semantics Layer

This semantics layer provides algorithms for online
and offline monitors from declarative specifica-
tions with quantitative semantics that are induc-
tively implemented by traversing the AST from
the syntax layer.

Springer Nature 2021 LATEX template

RTAMT 9

F
ig
.
5

:
A

rc
h
it

ec
tu

re
o
f

R
T

A
M

T
.

Springer Nature 2021 LATEX template

10 RTAMT

Fig. 6: Pastification from bfSTL to pSTL.

The implementation of the monitoring algo-
rithm is specific to the specification language used.
The time handler (TimeInterpreter) handles two
signal classes.

Discrete-time (DiscreteTimeInterpreter) This
class is the base for monitoring discrete-time sig-
nals. The implementation follows a time-triggered
approach in which sensing of inputs and out-
put generation are done at a periodic rate. Its
use is motivated by [12], which shows that by
weakening/strengthening real-time specifications,
discrete-time evaluation of properties preserves
important properties of dense-time interpretation.
This approach admits an upper bound on the
use of computation resources. The discrete-time
monitors essentially implement the algorithm
from [10] adapted to the robustness semantics.
Dense-time (DenseTimeInterpreter) This class
is the base for monitoring dense-time signals,
which use piece-wise constant interpolation. The
dense-time monitors implement the algorithms
from [13] and adapt them to the piece-wise con-
stant interpretation of signals. The resulting mon-
itors follow an event-driven approach, where the
samples can happen at any time in an inter-
vals of reals and there can be an arbitrary (but
finite) number of samples in any unit interval of
time. This approach is suitable for more advanced
and distributed applications in which state vari-
able observations are not periodically triggered
but rather driven by external, hence uncontrol-
lable events. The key algorithmic ingredient in the
offline evaluation of STL interpreted over dense-
time signals is an optimal streaming algorithm for
computing the minimum (or the maximum) val-
ues of numeric sequences (samples) over a sliding

window of fixed size. This procedure allows to
compute efficiently temporal operators G I , F I ,
H I and O I , whose semantics is defined as a com-
putation of the minimum/maximum values over a
sliding window I. It is also adapted to enable the
evaluation of the more general U I and S I oper-
ators. To address the online monitoring problem,
we use the incremental application of the offline
evaluation approach from [14] to the partially
received inputs.

In addition to the above, we support two
monitoring modes.

Offline Monitor (AbstractOfflineInterpreter)
This class supports typical offline evaluation,
which expects all data to exist at once when
evaluated. This provides a method evaluate to
evaluate the signal.
Online Monitor (AbstractOnlineInterpreter)
This class supports online evaluation of signals
with different timings. The operation thus needs
to manage memory to evacuate not incomplete
signals until the next signal update. This provides
a method update to evaluate signals.

Both evaluate and update method take a list of
variable names, (time, value) pairs and return
a float number representing the robustness degree
of the formula at that time index relative to the
input prefix observed in the present.

This layer supports a C++ implementation
to enable real-time as well. We use the Boost
Python library, a C++ library which enables
seamless operability between the two languages,
to integrate the Python front-end with the C++
back-end.

Springer Nature 2021 LATEX template

RTAMT 11

3.3 Integration of RTAMT to ROS

ROS is the de-facto standard in developing
robotic applications, supporting several messaging
approaches. In this paper, we assume that ROS
nodes use the subscriber/publisher messaging pat-
tern. A publisher categorizes a message into a
class (called a topic in ROS) and sends it with-
out any knowledge of who will read the message.
A subscriber expresses interest in receiving mes-
sage from one or more topics and only receives
messages of interest, without knowing who sent
the message5. We also assume that messages are
published at a periodic (and known) rate.

The integration of RTAMT into ROS is done
in rospy, as illustrated in Fig. 7. We assume that
we are monitoring a ROS system consisting of one
or more nodes that publish messages via variables
appearing in the bfSTL specification. The moni-
toring ROS node uses RTAMT to parse and eval-
uate the bfSTL formula. In order to communicate
with other ROS nodes that publish the relevant
messages, the specification must associate variable
names with their associated ROS topic names.
This is done using annotations. The specification
defines which topics the monitor needs to sub-
scribe and publish (topics rtamt/req, rtamt/gnt,
and rtamt/out in our example). Since the names
of the variables and associated topics as well as
the variable types are not known in advance but
are inferred from the specification definition, we
implemented a dynamic subscribing and publish-
ing mechanism using Python introspection and
reflection. For each variable that appears in the
specification, we check whether it has a valid ROS
message type, generate an instance of the object
and retrieve its class information. This informa-
tion provides a dynamic subscriber and publisher.
In addition, a RTAMT monitor is called by a sin-
gle dynamic callback function as a ROS node and
publishes the robustness with the new incoming
data from the subscriber.

An existing example of STL evaluation in ROS
is shown in Sec. 4.3, and an experiment is shown
in Sec. 6.2.

5Unless the publisher encodes its identity into the message
itself.

3.4 Integration of RTAMT to
MATLAB/Simulink

We integrate RTAMT into the MAT-
LAB/Simulink environment via S-functions
(short for system functions). S-functions provide a
powerful mechanism to extend the existing capa-
bilities of the Simulink environment by enabling
to program custom Simulink blocks. S-functions
use a special API that allows interaction with
the simulation engine similar to how the built-in
Simulink blocks interact with the engine. More
specifically, we use MATLAB Level 2 S-functions
that allow us to integrate the RTAMT API using
the MATLAB m-scripts.

An S-function consists of a set of callback
methods that are customized to provide the
desired functionality. The Simulink engine calls
the appropriate method at each stage of the simu-
lation. The main S-function callback methods are
associated with the following tasks:

Compilation The stage in which the MAT-
LAB/Simulink engine initializes the S-function
and its parameters.
Calculation of outputs at this state, the engine
computes the outputs of the block until all its
output ports are valid for the current time step.
Update discrete states The block performs activi-
ties that are executed only once per time step such
as updating discrete states.
Initialize and Terminate Methods Activities
required by S-function only once that are per-
formed at the beginning (setting up practitioner’s
data, initializing state vectors, etc.) and at the
end (memory deallocation, etc.) of the simulation.
Integration Computation related to the continu-
ous states and/or nonsampled zero crossings at
minor time steps.

The integration of MATLAB/Simulink con-
sists of the following steps:

• We define the RTAMT online monitor S-
function block with a single input port consist-
ing of an array of double signals (one for each
variable appearing in the specification), a single
output signal (the robustness signal) and a sin-
gle block parameter (the IA-STL specification).

• In the initialize method of the S-function, we
create the RTAMT STL specification object,

Springer Nature 2021 LATEX template

12 RTAMT

Fig. 7: Integration of RTAMT to ROS.

parse the specification passed as a parameter to
the block and pastify the monitor.

• In the method for calculating output, we fetch
the most recent array of input data from the
input port of the post, pass it to the mon-
itor update function, and forward it to the
robustness output port.

An existing example of STL evaluation on
MATLAB/Simulink is shown in Sec. 4.5, and an
experiment is shown in Sec. 6.3.

4 Application Programming
Interface

In this section we show a basic-use case of the
RTAMT API in Python with time-stamped data
and evaluate it with an arbitrary specification.
The three main steps in defining a specification
are as follows:

1. define: method for accessing a practitioner-
defined specification from a file,

2. parse: method for parsing the specification and
building its internal representation,

3. evaluate: method for passing the next snap-
shot of the input variables and computing the
resulting robustness.

4.1 Evaluating STL in Offline

1 import rtamt
2

3 spec = rtamt.StlDenseTimeOfflineSpecification ()
4 spec.declare_var('req', 'float ')
5 spec.declare_var('gnt', 'float ')
6 spec.spec = 'G((req >=3) ->(F[0 ,5](gnt >=3)))'

7 spec.parse()
8

9 req = [[0.0, 0.0], [2.0, 6.0], [4.0, 0.0],
[10.0, 0.0]]

10 gnt = [[0.0, 0.0], [6.0, 6.0], [8.0, 0.0],
[10.0, 0.0]]

11

12 rob = spec.evaluate (['req', req], ['gnt', gnt])

Listing 1: Evaluating STL in offline.

Listing 1 illustrates an example code of an offline
monitor. It follows the above steps.

4.2 Evaluating STL in Online

1 import rtamt
2

3 spec = rtamt.StlDenseTimeOnlineSpecification ()
4 spec.declare_var('req', 'float ')
5 spec.declare_var('gnt', 'float ')
6 spec.spec = 'H[0 ,10]((O[5 ,5](req >=3))->(O[0 ,5](

gnt >=3)))'
7 spec.parse()
8

9 req_0 = [[0.0, 0.0], [2.0, 6.0]]
10 gnt_0 = [[0.0, 0.0], [5.0, 6.0]]
11 req_1 = [[4.0, 0.0], [10.0, 0.0]]
12 gnt_1 = [[8.0, 0.0], [10.0, 0.0]]
13

14 rob = spec.update (['req', req_0], ['gnt', gnt_0
])

15 rob = spec.update (['req', req_1], ['gnt', gnt_1
])

Listing 2: Evaluating STL in online.

Listing 2 illustrates an example of online monitor
code. Major differences from offline use are that
only pSTL is allowed for the specification and the
evaluation is done by periodic update(). We note
that pastification can convert bfSTL to pSTL if we
insert spec.pastify() after line 7 spec.parse().

Springer Nature 2021 LATEX template

RTAMT 13

4.3 Evaluating STL on ROS

We sketch the ROS interface to RTAMTin
RTAMT4ROS.

1 def monitor(period , unit):
2 # Init STL SPEC
3 spec = init_spec(period , unit)
4 # Init ROS node
5 rospy.init_node(spec.name , anonymous=True)
6 # Init subscriber and publisher
7 pub = sub_and_pub(spec)
8 # Set monitoring frequency
9 rate = rospy.Rate(spec.

get_sampling_frequency ())
10 # Control loop
11 time_index = 0
12 while not rospy.is_shutdown ():
13 rob_msg = mon_update(spec , time_index)
14 pub.publish(rob_msg)
15 time_index += 1
16

17 # Wait until next evaluation
18 rate.sleep()

Listing 3: Skeleton of the RTAMT4ROS interface.

The skeleton of the interface, defined by the moni-
tor procedure, is shown in Listing 3. The first step
consists in initializing the STLspecification that is
to be monitored (line 3). The second step consists
in initializing the ROS node that hosts the STL
monitor (line 5), subscriber, and publisher (line
7), then sets the monitoring frequency (line 9).
The STL monitoring node than enters the infinite
monitoring loop, which is periodically invoked at
the specified frequency (line 18). Each iteration of
the loop consists of three steps:

1. automatic invocation of the callback mecha-
nism (Listing 4),

2. invoking the monitoring update (line 13, List-
ing 7), and

3. publishing the robustness to the appropriate
topic (line 14).

1 def callback(data , args):
2 spec = args [0]
3 var_name = args [1]
4

5 var = copy.deepcopy(data)
6 spec.var_object_dict[var_name] = var

Listing 4: Callback procedure.

The callback procedure, shown in Listing 4, simply
receives a new input sample message and copies it
to the monitor.

1 def init_spec(period , unit):
2 spec = rtamt.

StlDiscreteTimeOnlineSpecificationCpp ()
3 spec.set_sampling_period(period , unit)
4

5 spec.name = 'HandMadeMonitor '

6 spec.import_module('rtamt_msgs.msg', '
FloatStamped ')

7 spec.declare_var('req', 'FloatStamped ')
8 spec.declare_var('gnt', 'FloatStamped ')
9 spec.declare_var('rob', 'FloatStamped ')

10 spec.set_var_topic('req', 'rtamt/req')
11 spec.set_var_topic('gnt', 'rtamt/gnt')
12 spec.set_var_topic('rob', 'rtamt/gnt')
13 spec.spec = \
14 'rob.value = G[0 ,10]((req.value >=3) ->(F

[0,5](gnt.value >=3)))'
15

16 try:
17 spec.parse()
18 spec.pastify ()
19 except rtamt.STLParseException as err:
20 sys.exit()
21 return spec

Listing 5: Specification initialization procedure.

In the initialization procedure of specification (see
Listing 5), the practitioner creates an STL speci-
fication monitor (line 2), sets the sampling period
of the monitors (line 3), imports the ROS mes-
sage type that will be processed by the monitor
(line 6), defines the specification variables and the
property to monitor (lines 7-12), and parses the
specification (line 17). The pastification is applied
because the property is bfSTL(line 18).

1 def sub_and_pub(spec):
2 # Publish STL output var (robustness)
3 topic = spec.var_topic_dict[spec.out_var]
4 out = spec.get_value(spec.out_var)
5 pub = rospy.Publisher(topic , out.__class__ ,

queue_size =10)
6

7 # Subscribe STL input vars
8 for var_name in spec.free_vars:
9 var_object = spec.get_value(var_name)

10 topic = spec.var_topic_dict[var_name]
11 rospy.Subscriber(topic , var_object.

__class__ , callback , [spec , var_name])
12

13 return pub

Listing 6: Subscription and publication to ROS
topics.

The procedure shown in Listing 6 registers the
output variable of the monitor to a publisher, and
all the variables appearing in the STL specification
to a subscriber. We use reflection and introspec-
tion to dynamically determine the variables that
need to be registered, and their types.

1 def mon_update(spec , time_index):
2 var_name_object_list = []
3 for var_name in spec.free_vars:
4 var_name_object = (var_name , spec.

get_value(var_name))
5 var_name_object_list.append(

var_name_object)
6

7 # Update the monitor
8 # spec.update is of the form
9 # spec.update(time_index ,[('a',aObj) ,...)])

Springer Nature 2021 LATEX template

14 RTAMT

10 rob_msg = spec.update(time_index ,
var_name_object_list)

11

12 rob_msg.header.seq = time_index
13 rob_msg.header.stamp = rospy.Time.now()
14

15 return rob_msg

Listing 7: Monitoring update.

Finally, the monitor updates its evaluation and
computes robustness, as shown in Listing 7.

4.4 Textual Specifications for ROS

1 // name
2 specification spec_x
3

4 // imports
5 from rtamt_msgs.msg import FloatStamped
6

7 // variable declarations
8 input FloatStamped req
9 output FloatStamped gnt

10 output FloatStamped rob
11

12 // annotations
13 @ topic(req , rtamt/req)
14 @ topic(gnt , rtamt/gnt)
15 @ topic(rob , rtamt/rob)
16

17 // bfSTL property
18 rob.value = G[0 ,10]((req.value >=3) ->(F[0,5](gnt.

value >=3)))

Listing 8: The textual form ”spec.stl”.

The tool supports an automatic monitor setting
for ROS with a textual form for non-programmer
practitioners. The concrete textual specifications
consist of: the name header, a list of Python
modules to be imported, a list of variable decla-
rations, a list of annotations, and the property.
Listing 8 formulates this STL property. The syn-
tax of the specification language allows the use
of arbitrary data types. We assume that variables
req and gnt are defined as objects of Python
type FloatStamped with attributes header of
type Header and value of type float 6. We also
need to import the module that defines the arbi-
trary data type used in the specification (see line
5). The annotations are special comments that
are by default ignored but that can provide addi-
tional information in specific contexts. For now we
ignore the annotations from lines 13-15. We finally
note that the specification7 robustness is assigned

6We recall that bfSTL is defined over real-valued variables.
As a consequence, we allow bfSTL properties to refer to Python
variables and attributes of type int, long and float

7We allow only pSTL and bfSTL. The pastification is applied
in the background automatically when practitioners use bfSTL.

to one of the declared variables (rob.value in
line 18). Practitioners can launch these textual
specifications in ROS below,
$ rosrun rtamt4ros ros_stl_monitor.py

spec.stl --period 1 --unit s↪→

4.5 Evaluating STL in
MATLAB/Simulink

Now we describe how RTAMT monitors can be
used in MATLAB/Simulink models and illustrate
the API in Fig. 8. The integration is done by
inserting the online monitor block into an exist-
ing Simulink model. The monitor is a MATLAB
Level 2 S-function block that integrates RTAMT
as explained in Sec. 3.4. The block has one input
and one output port. In order to pass multiple
input signals to the monitor via the single input
port, all the input signals must be combined into
a single array signal using the multiplexer block.
The output of the block is the robustness sig-
nal, which can be used to visually inspect the
robustness of the property but also for any other
appropriate purpose.

5 Implementations of STL
Extended Language

In this section, we describe how practitioners
implement a new specification with the RTAMT
library. We first sketch how to extend STL moni-
tors with the IA-STL syntax and semantics. The
aim is to reuse as much as possible of the RTAMT
STL monitoring implementation and only add
implementation where STL and IA-STL differ. We
first identify and localize main differences between
STL and IA-STL:

• Syntax: IA-STL extends STL with the ability
to declare signal variables as input and output.

• Semantics: the only difference in the semantics
of IA-STL compared to STL is the treatment of
numerical predicates.

The syntax extension requires adding the input
and output keywords to the lexer and adding an
appropriate parsing rule for allowing to decorate
variables with these keywords. To add the seman-
tic extension, the practitioner must extend the
visitor used to traverse the STL formula parse tree
during its evaluation and overwrite the method
that evaluates the numerical predicates.

Springer Nature 2021 LATEX template

RTAMT 15

Fig. 8: Integration of RTAMT in MATLAB/Simulink.

The second scenario is the addition of a new
operator to STL. In this case, practitioners also
need to change both syntax and semantics. First,
the name of the operator must be added as a
reserved word to the lexer, as well as a new pars-
ing rule that describes its signature. In contrast
to the previous scenario, the visitor that parses
the formula during evaluation must be extended
with a new rule that provides the evaluation algo-
rithm for the new operator. Since the RTAMT
library provides support functionalities in abstract
classes, practitioners can implement a new specifi-
cation monitor quickly and easily. Python enables
fast prototyping whereas C++ offers fast compu-
tation; the practitioner may choose according to
their need.

6 Experiments

We make experiments for RTAMT from var-
ious perspectives and in different environ-
ments: RTAMT unit testing, ROS, and MAT-
LAB/Simulink. All experiments are run on
Intel® i9-10900K, 3.7 [GHz], 10 cores, and
128 [GB] RAM on Ubuntu 18.04.

6.1 Comparison of Computational
Efficiency

In this section, we empirically evaluate the com-
putational efficiency of the RTAMT in different
settings.

We first show how RTAMT scales in the size
of the input trace and the length of formulas in
the offline monitors of the Python back-end. The
results are depicted in Fig. 9 and show the dif-
ference of the average calculation time between
discrete-time and dense-time monitors.

Fig. 10 compares the computation time of the
online monitors of the C++ back-end against the
Python back-end. To compare the two algorithms,
we use for the experiment the STL specification
G [0,k](a + b ≥ −2) where k is the upper bound
on the timing modality of the always operator,
which we vary between 100 and 1 million. The
outcomes clearly demonstrate more than approx-
imately 10 times better efficiency of the C++
back-end, especially for large upper bounds in
temporal modalities.

Those experiences guide the choice of the mon-
itors for practitioners. However, even the slowest
case which is dense-time of the Python back-end
calculates approximately 0.5 [ms] per a sample
and has a good enough real-time performance.

6.2 HSR Simulator in ROS

We now show that RTAMT not only monitors
safety specification, but also enables fault local-
ization on the component level in an autonomous
mobile system in an ROS environment. This
experiment follows authors’ previous work [15]
which is based on assume-guarantee fashion.

We applied RTAMT4ROS to Human Support
Robot (HSR) [16] (Fig. 11), provided by Toy-
ota as a robot platform. Physically, HSR has
8 Degrees of Freedom (DoF), combining the 3 DoF
of the mobile base, 4 DoF of the arm and 1
DoF of the torso lift (Table 1), as well as several
(Light Detection And Ranging) LiDARs, along
with Stereo and monocular cameras. The platform
supports ROS Gazebo [17] simulator. We applied
RTAMT4ROS to the simulation.

Fig. 12b provides an overview of the tar-
get’s software architecture. The simple percep-
tion, planner, and controller layers constitute the
basic and abstract architecture in an autonomous

Springer Nature 2021 LATEX template

16 RTAMT

0 1M500K
of samples in signal

0

2

4

6

8

10

T
im

e
[s

ec
]

ϕ1

ϕ2

ϕ3

ϕ4

(a) Discrete-time

0 1M500K
of samples in signal

0

100

200

300

400

500

T
im

e
[s

ec
]

ϕ1

ϕ2

ϕ3

ϕ4

(b) Dense-time

Fig. 9: Scaling to the number of samples in the input signal and the length of formulas in the offline
monitors: ϕ1 ≡ req ≥ 3, ϕ2 ≡ req ≥ 3 → gnt ≥ 3, ϕ3 ≡ req ≥ 3 → F [0,5]gnt ≥ 3, ϕ4 ≡ H ((req ≥
3) → ¬(req ≥ 3)U [0,5](gnt ≥ 3)). Each experiment was repeated 50 times, and we report the average
computation time.

0 5K 10K
Upper bound in the temporal modality

0

2

4

6

8

10

12

T
im

e
[s

ec
]

Python

C++

Fig. 10: Comparison between Python and C++
in the online monitors.

mobile system [18] based on the ROS software
platform. Here is a brief description of each sub-
system.

Perception In an actual robot, such as a range
sensor, radar and vision-based perception are com-
monly used with sensor fusion techniques such
as Kalman-filters or Particle-filters for detection
and localization [19]. Specifically, the HSR percep-
tion layer has 2D grid map-based localization from
the ROS navigation package [20]. In formalism,
the perception recognizes statuses: ego position
x = (x, y, θ) where 2D position x, y, and angular

position θ, agents’ position A = {xa1
, . . . ,xa|A|},

static obstacles’ position O = {O1, . . . , O|O|}, and
prohibited regions B = {B1 . . . , B|B|} from ground
truth of x∗, A∗, O∗, and B∗ from real-world plant
with error ε.
Planner This layer decides its own path W =
{L1, . . . ,L|W|} based on the previous perception
layer’s recognition x, A, O, and B. Generally, the
robot has a global path planner and local path
planner. The former maps an overview of a path
from a high-level graph similar to a static car-
navigation map; the latter generates a motion
path that treats more closed and dynamic obsta-
cles. In the HSR planner layer, for simplicity, we
omit the global path planner and deploy only
Rapidly-exploring Random Trees (RRTs) [21] as
a local path planner to reach a goal.
Controller Typically, this layer handles low-level
hardware such as vehicle base control and actua-
tor control based on W from the previous planner
subsystem. Because it is a low-level control, gen-
erally a PID controller yields adequate results. In
the case of HSR, a PID-based path follower is
implemented which tracks way-points, minimizing
error between current position x and W from the
planner.

Based on this architecture, we define safety
specifications in the system and subsystems. The
most important system-level safety specification is

Springer Nature 2021 LATEX template

RTAMT 17

Fig. 11: HSR.

Table 1: HSR basic specification.

Size Footprint φ450 [mm]
Height (min/max) 1,047/1,392 [mm]
Freedom 8
Weight About 40 [kg]

Base Drive system Omnidirectional
Environment Indoor step 10 [mm]

Climbing 7 [deg]
Max speed 0.22 [m/s]

Hoisting Stroke 690 [mm]
Max speed 150 [mm/s]

Arm Length About 600 [mm]
Movable height 0˜1,350 [mm]
Movable depth 450 [mm]
Payload 0.5 [kg]

Gripper Grip speed <0.4 [s]
Max force About 40 [N]
Grip range 135 [mm]
Max suction force About 4 [N]

(a) Variable map. (b) Architecture.

Fig. 12: HSR system: (a) ego position x, agents’ position A = {xa1
, . . . ,xa|A|}, static obstacles’ position

O = {O1, . . . , O|O|}, and prohibited regions B = {B1 . . . , B|B|} (b) ground truth of x∗, A∗, O∗, and B∗
from real-world plant with error ε.

a collision prohibition.

ϕsys ≡
∧

Ti∈A,O,B

G [0,τ] (Dist(x∗, Ti
∗) > Ccoll)

(1)
Where Dist is the Euclidean distance and τ is the
time window of the formula. Simply G expresses
”all time” the distance between the ego and others
should be greater than some threshold. We use
ground truths x∗, A∗, O∗, and B∗ while take an
advantage of using a simulator since x, A, O, and
B have recognition errors of those.

The role of the perception subsystem is to
recognize other obstacles and agents as much as

possible. In other words, we may check the dis-
crepancy between any recognition and the ground
truth as perception specifications:

ϕper ≡∧
Ti∈x,A,O,B

G [0,τ1]F [0,τ2] (err(Ti, Ti
∗) < εper)

(2)

Where err is a perception error metrics in each
specific domain. We use GF to give a tolerance
of the violation with the time window τ1. τ2 is
the duration time which permits the error since a
small perception error is expected and it does not
affect the system issue immediately.

Springer Nature 2021 LATEX template

18 RTAMT

The planner subsystem should generate a rea-
sonable path W which does not cause collision
with others:

ϕplan ≡
∧

Ti∈A,O,B

G [0,τ] (Dist(W, Ti) > Cplan)

(3)
Finally, the controller subsystem should follow

the reference as a low level controller:

ϕcon ≡ G [0,τ1]F [0,τ2] (err(W,x) < εcon) (4)

Now we share the results of evaluation of sys-
tem safety and subsystem level of fault localization
when the system has a violation, based on the
formal specifications above (Fig. 14). Each of the
specification parameters are τ = 3 [sec], ε =
0.3 [m] in Eq. 1 τ1 = 7, τ2 = 5 [sec], ε = 0.1 [m] in
Eq. 2, τ = 3 [sec], ε = 0.2 [m] in Eq. 3, and τ1 = 7,
τ2 = 5 [sec], ε = 0.1 [m/s] in Eq. 4. Since all
properties are bfSTL, in order to evaluate online,
we applied pastification for all properties. First,
the system all green case is shown in Fig. 14a,
where we see all the specifications on both the sys-
tem and subsystem levels satisfy the robustness
of Eq. 1, 2, 3, 4 all the time. On the other hand,
Fig. 14b shows a violation of system specifica-
tion and subsystem level of fault localization. The
planner is intentionally injected with a malfunc-
tion, the RRT being cut-off and given the wrong
way points, causing a collision with a desk. The
experiment shows that planner specification Eq. 3
is violated due to fault injection, so that the sys-
tem specification in Eq. 1 is violated either. In
reality, it is difficult for a designer to detect a sys-
tem fail based on a subsystem fail because there
are many subsystems, and a subsystem failure
does not always cause a system failure. However,
we assume a designer can at least detect a sus-
picious subsystem when the system failure. This
STL assumption-based fault localization approach
can also find a system issue caused by perception
or controller failure [15].

6.3 MATLAB/Simulink Model

In this section, we show how the RTAMT library
integrated into MATLAB/Simulink and its result-
ing robustness monitors can be used to support
Model-Based Development (MBD) of CPS. We

explore two scenarios using the aircraft eleva-
tor control system (AECS), a model that illus-
trates MBD of a fault-tolerant control system
(Fig. 15).These flight control systems are typ-
ically associated to the horizontal tails of the
aircraft. They are responsible for the control
of the aircraft’s pitch. The system incorporates
safety-relevant redundant components, namely:
(1) four hydraulic actuators (two per elevator),
three hydraulic controllers for driving the actua-
tors, two Primary Flight Control Units (PFCUs)
and two control modules for each actuator, one
providing full range control law and limited range
(degraded) control law. AECS has one input,
the Pilot Command (PC), and two observable
outputs, the position of left and right actuators
(LEP and REP). The main requirement intu-
itively states that the actuators must follow PC
within reasonable time and error. We translate
the requirement for the LEP (the requirement
for the REP is similar) to the following IA-STL
specification:

G (↑ (pc ≥ m)→ G [0,T]F [0,t](|pc− lep| ≤ n)),

where m,n, t and T are constants.
We use RTAMT to do sensitivity analysis

and falsification testing, two common approaches
supported by tools like Breach and S-TaLiRo.
Sensitivity of the model robustness to its STL
requirements is studied by uniformly varying
input parameters, simulating the model for each
combination and monitoring the simulation out-
comes against the requirements. In this case study,
we test the system against PC step signals. A
step signal is fully characterized by two parame-
ters, the frequency and the amplitude of individual
steps in the signal. We varied the frequency of
the step input between 0.2 and 1 and the ampli-
tude between 1 and 1.75, generating in total 16
simulations, one for each (amplitude, frequency)
concrete pair. For every simulation, we evaluated
how robust is the system behavior with respect
to the bounded stabilization requirement for that
specific input signal. Fig. 16a shows a heat-map
visualizing the outcomes. This graphical repre-
sentation of the results helps understanding how
different input parameters affect the requirements
and enable identifying critical parameter regions.

Springer Nature 2021 LATEX template

RTAMT 19

(a) Gazebo view as a ground truth. (b) Rviz view as a robot perception view.

Fig. 13: HSR simulator based on ROS Gazebo.

0 5 10 15 20 25 30 35 40 45
Time [sec]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
ne

ss

(a) The case of all systems satisfying safety specifica-
tion. https://youtu.be/6xFHhv-F9A4

0 5 10 15 20 25 30 35 40 45
Time [sec]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
ne

ss

System
Perception
Planner
Controller

(b) The case of violation because of the planner fault.
https://youtu.be/nGJ8siD8Fgk

Fig. 14: HSR experiment on fault localization with system (Eq. 1) and subsystem safety specifications
(Eq. 2-4) in STL with RTAMT: (a) shows all specifications are satisfied (robustness is greater than zero).
(b) shows the system specification is finally violated (robustness is below zero) and we can expect the
planner subsystem is the cause because it fails before the system since other perception and planner
subsystems satisfy the specification.

Given an STL specification and the system
model, falsification testing aims to identify an
input signal that results in the violation of the
requirement. It does so by framing the test gener-
ation as a global optimization problem. The global
optimizer (used as an off-the-shelf black-box com-
ponent in this context) has the task of minimizing
the system robustness to a requirement by find-
ing appropriate inputs that steer the system in
that direction, where the quantitative output of
the monitor is used as the objective function. In

essence, the global optimizer performs an iterative
search in the space of input signals, where each
iteration aims at steering the system towards lower
robustness. The outcome is shown in Fig. 16b –
every point (x, y) corresponds to a simulation of
the system where x is the iteration number and
y is the robustness of the system behavior to the
requirement as measured by the monitor.

https://youtu.be/6xFHhv-F9A4
https://youtu.be/nGJ8siD8Fgk

Springer Nature 2021 LATEX template

20 RTAMT

Fig. 15: Aircraft Elevator Control System (AECS).

(a) Sensitivity analysis. (b) Falsification testing.

Fig. 16: AECS experiment: (a) a heat-map of the robustness on the input parameters. (b) a gradual
reduction of the robustness to falsify the requirement by a global optimizer.

7 Related Work

Linear Temporal Logic (LTL) [22] is a well-known
formal specification language for describing tem-
poral properties of reactive systems. Signal Tem-
poral Logic (STL) [6] is an extension of LTL
that allows reasoning about real-valued signals
and their real-time properties. Originally, both
LTL and STL are interpreted using qualitative
semantics – an observed behavior either satisfies
or violates its specification. Fainekos and Pap-
pas [23, 24] first proposed equipping temporal
logic with spatial quantitative semantics, based on
the infinity norm. Donzé and Maler’s [25] adapt
spatial robustness to STL and extend it with a
complementary notion of time robustness. Intu-
itively, time robustness indicates how much an
observed signal needs to be shifted in time in order

to satisfy or violate the specification. Ferrère et al.
developed an efficient algorithm for quantitative
evaluation of STL [13], rendering the approach
practical.

A combined notion of time and space robust-
ness is proposed in [26]. Akazaki extended STL
with averaged temporal operators in [27], which
allow to quantify how often a temporal operator
is satisfied within a bounded interval.

Evaluating temporal specifications with
quantitative semantics was implemented in S-
TaLiRo [28] and Breach [29] tools. These works
established the theoretical background for our
library, which implements STL with infinity-norm
quantitative semantics.

Runtime verification of declarative specifica-
tions has been extensively studied. Havelund and

Springer Nature 2021 LATEX template

RTAMT 21

Rosu [30] proposed a dynamic programming algo-
rithm to monitor past-time Linear Temporal Logic
(ptLTL) specifications. Our inspiration to strive
for a simple and elegant online monitoring proce-
dure partly arose from this seminal paper. Rein-
bacher et al. propose in [31, 32] synthesizable
hardware monitors from past-time Metric Tempo-
ral Logic (ptMTL) interpreted over discrete-time.
Similarly, Jakšić et al. developed monitors that
could be implemented in hardware for bounded-
future Signal Temporal Logic (bfSTL). Reinbacher
et al. [33] proposed monitoring procedures for
Mission-time Linear Temporal Logic (MLTL), a
variant of discrete-time MTL. The monitoring
procedure consists of two types of observers: a
synchronous one that yields a 3-valued instant
abstraction of the satisfaction check, and an asyn-
chronous one that makes this abstraction concrete
at a later (bounded) time. This approach also
allows a probabilistic estimation of the system
health using a Bayesian network on top of the
synchronous observers. This monitoring procedure
was implemented in the R2U2 tool [34, 35]. More
recently, MLTLM [36] was proposed as a language
that allows to define temporal specifications over
variables of multiple type. Our library supports
quantitative semantics and makes a distinction
between inputs and outputs.

Another relevant field of research is stream
runtime verification (SRV), in which runtime
monitors are specified by describing operations
that transform input streams of data to out-
put streams of data. Precursor ideas of collect-
ing statistics over execution traces can be found
in [37]. Lola [38] proposes a SRV approach for syn-
chronous systems. Lola 2.0 [39] extends the orig-
inal language with parameterization and multiple
temporal time scales. RTLola [40] and Tessla [41]
provide support for specifying and monitoring
real-time properties of reactive systems. Finally,
Striver [42] provides a more general language
that enables expressing other real-time monitoring
languages. SRV approaches are powerful and typ-
ically more general than logic-based approaches.
Temporal logic formalism, such as LTL and STL,
can be often expressed with SRV. However, this
comes at the price of requiring the user to explic-
itly encode the temporal logic semantics and thus
losing a useful layer of abstraction between the
user and the underlying formalism.

The problem of online robustness monitoring
was studied in [43, 44]. Dokhanchi et al. [43]
proposed an online monitoring approach which
required a model of the system to make predic-
tions about its behavior. In [44], Deshmukh et
al. proposed an interval-based approach of online
evaluation that allows estimating the minimum
and the maximum robustness with respect to
both the observed prefix and unobserved trace
suffix. An alternative approach to online mon-
itoring proposed a specification language that
relaxes the causality restriction and allows the
output to depend on a bounded amount of future
input [45]. Algebraic approaches to runtime veri-
fication of temporal logic equipped with quantita-
tive semantics were studied in [46] and [47]. These
papers considered alternative ways to address
online (qualitative and quantitative) monitoring
of temporal logic specifications.

Pattern matching of Timed Regular Expres-
sions (TREs) [48, 49] has been a lively area of
research in recent years. Ulus et al. [50] pro-
posed an offline pattern matching procedure for
TRE with qualitative semantics and interpreted
over continuous time, utilizing a novel matching
approach that used operations on 2-dimensional
zones. Ulus et al. [51] proposed an online variant
of the procedure, also using the idea of derivatives
adapted to the continuous-time. These pattern
matching algorithms were implemented in the
MONTRE tool [52]. Unlike previous automata-
based matching algorithms for TREs which have
been developed in [53–55], our work is centered on
temporal logics rather than regular expressions.

8 Future Work and
Conclusions

We presented RTAMT, a library for generating
online and offline monitors from declarative spec-
ifications. We have integrated RTAMT into ROS
as RTAMT4ROS and applied it to robotic appli-
cations as a robotics domain experiment. We have
also integrated RTAMT into MATLAB/Simulink
and applied it to AECS as a control domain exper-
iment. The tool provides a flexible and modular
library that enables practitioner specific specifica-
tion language implementation.

In order to support process management that
handles both time and event driven cases, we

Springer Nature 2021 LATEX template

22 RTAMT

assumed dense-time as a perfect continuous clock,
a realistic assumption in many applications. As
a consequence, we have extended RTAMT with
an event-driven online monitoring algorithm for
bfSTL in which sensor measurements will be
allowed to arrive at any point on the dense-time
axis.

The current library infrastructure already
allows the monitor to continuously publish the
computed robustness degree. This will enable
decentralizing and distributing monitors. We will
investigate both the theory and the implementa-
tion of distributed RTAMT monitors, especially in
the context of robotic applications.

We plan to provide support for additional spec-
ification languages, but also for other semantic
extensions of existing languages such as STL with
weighted edit distance semantics.

Finally, we will further evaluate the library
and the tool in other application domains. Actu-
ally, online monitoring of declarative specifications
has various potential use-cases in the broad CPS
domain and not only in robotics. Typical con-
troller properties are naturally expressed in speci-
fication languages such as STL [56]. For Advanced
Driver Assistance Systems (ADAS), there has
been work on defining critical scenarios for pre-
crash safety systems [57]. For self-driving sys-
tems, Responsibility-Sensitive Safety (RSS) [58]
has been proposed, based on a clear definition by
a math formula. Since RSS is not a temporal logic-
based definition, it would be interesting to encode
it in STL [59].

We plan to evaluate our library in such scenar-
ios, both in a simulation environment and during
actual in-field physical testing. Search-based test-
ing [28, 29] also uses formalisms such as STL/MTL
as a cost function to find input vectors that steer
the system to property violation. This approach
defines test generation as an optimization prob-
lem. In each iteration, the simulator executes the
new input vector and the outcomes are evaluated
in an offline fashion. We plan to explore whether
RTAMT can make this process more efficient and
dynamic by evaluating the outputs after each sim-
ulation step, adapting online search. VerifAI [60]
is a simulation-based verification environment for
AI-based applications that includes search-based
testing which is implemented in Python and is one
candidate for the application of RTAMT. Finally,
we will consider potential applications of RTAMT

in the verification and validation of perception
systems based on neural networks. Several formal
verification targets [59, 61, 62], approaches [63–
66], and specifications [67] have been recently
proposed. Unexpected failure of such perception
systems can be checked during operation using our
library.

References

[1] Lee, E.A., Seshia, S.A.: Introduction to
embedded systems: A cyber-physical systems
approach (2016)

[2] Mitra, S.: Verifying cyber-physical systems:
A path to safe autonomy (2021)

[3] Alur, R.: Principles of cyber-physical systems
(2015)

[4] Quigley, M., Conley, K., Gerkey, B., Faust,
J., Foote, T., Leibs, J., Wheeler, R., Ng,
A.Y.: Ros: an open-source robot operating
system. In: ICRA Workshop on Open Source
Software, vol. 3, p. 5 (2009). Kobe, Japan

[5] Sha, L.: Using simplicity to control complex-
ity. IEEE Software (4), 20–28 (2001)

[6] Maler, O., Nickovic, D.: Monitoring tem-
poral properties of continuous signals. In:
Formal Techniques, Modelling and Analysis
of Timed and Fault-Tolerant Systems, Joint
International Conferences on Formal Mod-
elling and Analysis of Timed Systems, FOR-
MATS 2004 and Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT
2004, Grenoble, France, September 22-24,
2004, Proceedings, pp. 152–166 (2004)

[7] Ferrère, T., Nickovic, D., Donzé, A., Ito, H.,
Kapinski, J.: Interface-aware signal tempo-
ral logic. In: Proceedings of the 22nd ACM
International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Mon-
treal, QC, Canada, April 16-18, 2019, pp.
57–66 (2019)

[8] Nickovic, D., Yamaguchi, T.: RTAMT: online
robustness monitors from STL. In: Auto-
mated Technology for Verification and Anal-
ysis - 18th International Symposium, ATVA

Springer Nature 2021 LATEX template

RTAMT 23

2020, Hanoi, Vietnam, October 19-23, 2020,
Proceedings, pp. 564–571 (2020). https://do
i.org/10.1007/978-3-030-59152-6 34. https:
//doi.org/10.1007/978-3-030-59152-6 34

[9] Maler, O., Nickovic, D., Pnueli, A.: On syn-
thesizing controllers from bounded-response
properties. In: Computer Aided Verification,
19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings,
pp. 95–107 (2007)

[10] Jaksic, S., Bartocci, E., Grosu, R., Kloib-
hofer, R., Nguyen, T., Nickovic, D.: From
signal temporal logic to FPGA monitors.
In: 13. ACM/IEEE International Conference
on Formal Methods and Models for Code-
sign, MEMOCODE 2015, Austin, TX, USA,
September 21-23, 2015, pp. 218–227 (2015)

[11] Parr, T.: The definitive antlr 4 reference
(2013)

[12] Henzinger, T.A., Manna, Z., Pnueli, A.:
What good are digital clocks? In: Interna-
tional Colloquium on Automata, Languages,
and Programming, pp. 545–558 (1992).
Springer

[13] Donzé, A., Ferrère, T., Maler, O.: Effi-
cient robust monitoring for STL. In: Com-
puter Aided Verification (CAV), pp. 264–279
(2013)

[14] Nickovic, D., Maler, O.: AMT: A property-
based monitoring tool for analog systems.
In: Formal Modeling and Analysis of Timed
Systems, 5th International Conference, FOR-
MATS 2007, Salzburg, Austria, October 3-5,
2007, Proceedings, pp. 304–319 (2007)

[15] Yamaguchi, T., Hoxha, B., Prokhorov, D.,
Deshmukh, J.V.: Specification-guided soft-
ware fault localization for autonomous mobile
systems. In: 2020 18th ACM-IEEE Interna-
tional Conference on Formal Methods and
Models for System Design (MEMOCODE),
pp. 1–12 (2020). IEEE

[16] Yamamoto, T., Terada, K., Ochiai, A., Saito,
F., Asahara, Y., Murase, K.: Development
of human support robot as the research

platform of a domestic mobile manipulator.
ROBOMECH Journal 6(1), 4 (2019)

[17] Koenig, N., Howard, A.: Design and use
paradigms for gazebo, an open-source multi-
robot simulator. In: IEEE/RSJ International
Conference on Intelligent Robots and Sys-
tems, Sendai, Japan, pp. 2149–2154 (2004)

[18] Urmson, C., Anhalt, J., Bagnell, D., Baker,
C., Bittner, R., Clark, M., Dolan, J., Dug-
gins, D., Galatali, T., Geyer, C., et al.:
Autonomous driving in urban environments:
Boss and the urban challenge. Journal of
Field Robotics 25(8), 425–466 (2008)

[19] Thrun, S., Burgard, W., Fox, D.: Probabilis-
tic robotics (2005)

[20] Marder-Eppstein, E., Berger, E., Foote,
T., Gerkey, B., Konolige, K.: The office
marathon: Robust navigation in an indoor
office environment. In: International Confer-
ence on Robotics and Automation (2010)

[21] Kuffner, J.J., LaValle, S.M.: Rrt-connect: An
efficient approach to single-query path plan-
ning. In: Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference
on Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065), vol. 2, pp.
995–1001 (2000). IEEE

[22] Pnueli, A.: The temporal logic of programs.
In: 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), pp. 46–57
(1977). ieee

[23] Fainekos, G.E., Pappas, G.J.: Robustness
of temporal logic specifications. In: Formal
Approaches to Software Testing and Runtime
Verification, First Combined International
Workshops, FATES 2006 and RV 2006, Seat-
tle, WA, USA, August 15-16, 2006, Revised
Selected Papers, pp. 178–192 (2006)

[24] Fainekos, G.E., Pappas, G.J.: Robustness of
temporal logic specifications for continuous-
time signals. Theor. Comput. Sci. 410(42),
4262–4291 (2009). https://doi.org/10.1016/j.
tcs.2009.06.021

https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1016/j.tcs.2009.06.021

Springer Nature 2021 LATEX template

24 RTAMT

[25] Donzé, A., Maler, O.: Robust satisfaction
of temporal logic over real-valued signals.
In: Formal Modeling and Analysis of Timed
Systems (FORMATS), pp. 92–106 (2010)

[26] Abbas, H., Mittelmann, H., Fainekos, G.:
Formal property verification in a confor-
mance testing framework. In: 2014 Twelfth
ACM/IEEE Conference on Formal Methods
and Models for Codesign (MEMOCODE),
pp. 155–164 (2014). IEEE

[27] Akazaki, T., Tasuo, I.: Time robustness in
MTL and expressivity in hybrid system fal-
sification. In: Computer Aided Verification,
27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2011,
Proceedings (2015 (to appear))

[28] Annpureddy, Y., Liu, C., Fainekos, G.E.,
Sankaranarayanan, S.: S-taliro: A tool for
temporal logic falsification for hybrid sys-
tems. In: Tools and Algorithms for the Con-
struction and Analysis of Systems - 17th
International Conference, TACAS 2011, Held
as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26-April
3, 2011. Proceedings, pp. 254–257 (2011)

[29] Donzé, A.: Breach, A toolbox for verification
and parameter synthesis of hybrid systems.
In: Computer Aided Verification, 22nd Inter-
national Conference, CAV 2010, Edinburgh,
UK, July 15-19, 2010. Proceedings, pp. 167–
170 (2010)

[30] Havelund, K., Roşu, G.: Synthesizing mon-
itors for safety properties. In: International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pp.
342–356 (2002). Springer

[31] Reinbacher, T., Függer, M., Brauer, J.: Real-
time runtime verification on chip. In: Proc.
of RV 2012. LNCS, vol. 7687, pp. 110–125
(2013). https://doi.org/10.1007/978-3-642-
35632-2-13

[32] Reinbacher, T., Függer, M., Brauer, J.: Run-
time verification of embedded real-time sys-
tems. Formal Methods in System Design

44(3), 230–239 (2014)

[33] Reinbacher, T., Rozier, K.Y., Schumann,
J.: Temporal-logic based runtime observer
pairs for system health management of real-
time systems. In: International Conference on
Tools and Algorithms for the Construction
and Analysis of Systems, pp. 357–372 (2014).
Springer

[34] Schumann, J., Moosbrugger, P., Rozier, K.Y.:
Runtime analysis with R2U2: A tool exhibi-
tion report. In: Runtime Verification - 16th
International Conference, RV 2016, Madrid,
Spain, September 23-30, 2016, Proceedings,
pp. 504–509 (2016)

[35] Rozier, K.Y., Schumann, J.: R2U2: tool
overview. In: RV-CuBES 2017. An Interna-
tional Workshop on Competitions, Usability,
Benchmarks, Evaluation, and Standardisa-
tion for Runtime Verification Tools, Septem-
ber 15, 2017, Seattle, WA, USA, pp. 138–156
(2017)

[36] Hariharan, G., Kempa, B., Wongpiromsarn,
T., Jones, P.H., Rozier, K.Y.: MLTL multi-
type (MLTLM): A logic for reasoning about
signals of different types. In: Software Verifi-
cation and Formal Methods for ML-Enabled
Autonomous Systems - 5th International
Workshop, FoMLAS 2022, and 15th Inter-
national Workshop, NSV 2022, Haifa, Israel,
July 31 - August 1, and August 11, 2022,
Proceedings, pp. 187–204 (2022)

[37] Finkbeiner, B., Sankaranarayanan, S., Sipma,
H.: Collecting statistics over runtime exe-
cutions. In: Runtime Verification 2002, RV
2002, FLoC Satellite Event, Copenhagen,
Denmark, July 26, 2002, pp. 36–54 (2002).
https://doi.org/10.1016/S1571-0661(04)805
76-0. https://doi.org/10.1016/S1571-0661
(04)80576-0

[38] D’Angelo, B., Sankaranarayanan, S.,
Sánchez, C., Robinson, W., Finkbeiner,
B., Sipma, H.B., Mehrotra, S., Manna, Z.:
LOLA: runtime monitoring of synchronous
systems. In: 12th International Symposium
on Temporal Representation and Reasoning
(TIME 2005), 23-25 June 2005, Burlington,

https://doi.org/10.1007/978-3-642-35632-2-13
https://doi.org/10.1007/978-3-642-35632-2-13
https://doi.org/10.1016/S1571-0661(04)80576-0
https://doi.org/10.1016/S1571-0661(04)80576-0
https://doi.org/10.1016/S1571-0661(04)80576-0
https://doi.org/10.1016/S1571-0661(04)80576-0

Springer Nature 2021 LATEX template

RTAMT 25

Vermont, USA, pp. 166–174 (2005)

[39] Faymonville, P., Finkbeiner, B., Schirmer, S.,
Torfah, H.: A stream-based specification lan-
guage for network monitoring. In: Runtime
Verification: 16th International Conference,
RV 2016, Madrid, Spain, September 23–
30, 2016, Proceedings, pp. 152–168 (2016).
Springer

[40] Faymonville, P., Finkbeiner, B., Schwenger,
M., Torfah, H.: Real-time stream-based
monitoring. arXiv preprint arXiv:1711.03829
(2017)

[41] Convent, L., Hungerecker, S., Leucker, M.,
Scheffel, T., Schmitz, M., Thoma, D.:
Tessla: temporal stream-based specification
language. In: Formal Methods: Foundations
and Applications: 21st Brazilian Symposium,
SBMF 2018, Salvador, Brazil, November 26–
30, 2018, Proceedings 21, pp. 144–162 (2018).
Springer

[42] Gorostiaga, F., Sánchez, C.: Striver: Stream
runtime verification for real-time event-
streams. In: Runtime Verification: 18th Inter-
national Conference, RV 2018, Limassol,
Cyprus, November 10–13, 2018, Proceedings
18, pp. 282–298 (2018). Springer

[43] Dokhanchi, A., Hoxha, B., Fainekos, G.: On-
line monitoring for temporal logic robustness.
In: International Conference on Runtime Ver-
ification, pp. 231–246 (2014). Springer

[44] Deshmukh, J.V., Donzé, A., Ghosh, S., Jin,
X., Juniwal, G., Seshia, S.A.: Robust online
monitoring of signal temporal logic. For-
mal Methods in System Design 51(1), 5–30
(2017)

[45] Mamouras, K., Wang, Z.: Online signal mon-
itoring with bounded lag. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 39(11),
3868–3880 (2020). https://doi.org/10.1109/
TCAD.2020.3013053

[46] Jaksic, S., Bartocci, E., Grosu, R., Nick-
ovic, D.: An algebraic framework for runtime

verification. IEEE Trans. on CAD of Inte-
grated Circuits and Systems 37(11), 2233–
2243 (2018). https://doi.org/10.1109/TCAD
.2018.2858460

[47] Mamouras, K., Chattopadhyay, A., Wang,
Z.: Algebraic quantitative semantics for effi-
cient online temporal monitoring. In: Tools
and Algorithms for the Construction and
Analysis of Systems - 27th International Con-
ference, TACAS 2021, Held as Part of the
European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxem-
bourg City, Luxembourg, March 27 - April 1,
2021, Proceedings, Part I, pp. 330–348 (2021)

[48] Asarin, E., Caspi, P., Maler, O.: Timed reg-
ular expressions. Journal of ACM 49(2),
172–206 (2002)

[49] Asarin, E., Caspi, P., Maler, O.: A Kleene
theorem for timed automata. In: Logic
in Computer Science (LICS), pp. 160–171
(1997)

[50] Ulus, D., Ferrère, T., Asarin, E., Maler, O.:
Timed pattern matching. In: Formal Model-
ing and Analysis of Timed Systems (FOR-
MATS), pp. 222–236 (2014)

[51] Ulus, D., Ferrère, T., Asarin, E., Maler, O.:
Online timed pattern matching using deriva-
tives. In: Tools and Algorithms for the Con-
struction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Held
as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, pp. 736–751 (2016)

[52] Ulus, D.: Montre: A tool for monitoring timed
regular expressions. In: Computer Aided Ver-
ification - 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part I, pp. 329–335 (2017)

[53] Waga, M., Hasuo, I.: Moore-machine filter-
ing for timed and untimed pattern matching.
IEEE Trans. on CAD of Integrated Circuits
and Systems 37(11), 2649–2660 (2018)

[54] Waga, M., Hasuo, I., Suenaga, K.: Efficient

https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1109/TCAD.2020.3013053
https://doi.org/10.1109/TCAD.2018.2858460
https://doi.org/10.1109/TCAD.2018.2858460

Springer Nature 2021 LATEX template

26 RTAMT

online timed pattern matching by automata-
based skipping. In: Formal Modeling and
Analysis of Timed Systems - 15th Interna-
tional Conference, FORMATS 2017, Berlin,
Germany, September 5-7, 2017, Proceedings,
pp. 224–243 (2017)

[55] Waga, M., Hasuo, I., Suenaga, K.: MONAA:
A tool for timed pattern matching with
automata-based acceleration. In: 3rd Work-
shop on Monitoring and Testing of Cyber-
Physical Systems, MT@CPSWeek 2018,
Porto, Portugal, April 10, 2018, pp. 14–15
(2018)

[56] Kapinski, J., Jin, X., Deshmukh, J., Donze,
A., Yamaguchi, T., Ito, H., Kaga, T.,
Kobuna, S., Seshia, S.: St-lib: A library
for specifying and classifying model behav-
iors. Technical report, SAE Technical Paper
(2016)

[57] Najm, W.G., Smith, J.D., Yanagisawa, M.,
et al.: Pre-crash scenario typology for crash
avoidance research. Technical report, United
States. National Highway Traffic Safety
Administration (2007)

[58] Koopman, P., Osyk, B., Weast, J.:
Autonomous vehicles meet the physical
world: Rss, variability, uncertainty, and prov-
ing safety. In: International Conference on
Computer Safety, Reliability, and Security,
pp. 245–253 (2019). Springer

[59] Hekmatnejad, M., Yaghoubi, S., Dokhanchi,
A., Amor, H.B., Shrivastava, A., Karam,
L., Fainekos, G.: Encoding and monitoring
responsibility sensitive safety rules for auto-
mated vehicles in signal temporal logic. In:
Proceedings of the 17th ACM-IEEE Inter-
national Conference on Formal Methods and
Models for System Design, pp. 1–11 (2019)

[60] Dreossi, T., Fremont, D.J., Ghosh, S., Kim,
E., Ravanbakhsh, H., Vazquez-Chanlatte, M.,
Seshia, S.A.: Verifai: A toolkit for the design
and analysis of artificial intelligence-based
systems. arXiv preprint arXiv:1902.04245
(2019)

[61] Rong, G., Shin, B.H., Tabatabaee, H., Lu, Q.,

Lemke, S., Možeiko, M., Boise, E., Uhm, G.,
Gerow, M., Mehta, S., et al.: Lgsvl simula-
tor: A high fidelity simulator for autonomous
driving. In: 2020 IEEE 23rd International
Conference on Intelligent Transportation Sys-
tems (ITSC), pp. 1–6 (2020). IEEE

[62] Vitelli, M., Chang, Y., Ye, Y., Wo lczyk, M.,
Osiński, B., Niendorf, M., Grimmett, H.,
Huang, Q., Jain, A., Ondruska, P.: Safetynet:
Safe planning for real-world self-driving vehi-
cles using machine-learned policies. arXiv
preprint arXiv:2109.13602 (2021)

[63] Liu, C., Arnon, T., Lazarus, C., Barrett,
C., Kochenderfer, M.J.: Algorithms for ver-
ifying deep neural networks. arXiv preprint
arXiv:1903.06758 (2019)

[64] Tuncali, C.E., Fainekos, G., Ito, H., Kapinski,
J.: Simulation-based adversarial test genera-
tion for autonomous vehicles with machine
learning components. In: 2018 IEEE Intel-
ligent Vehicles Symposium (IV), pp. 1555–
1562 (2018). IEEE

[65] Date, Y., Baba, T., Hoxha, B., Yamaguchi,
T., Prokhorov, D.: Application of simulation-
based methods on autonomous vehicle con-
trol with deep neural network: Work-in-
progress. In: 2020 International Conference
on Embedded Software (EMSOFT), pp. 1–3
(2020). IEEE

[66] Ghosh, S., Pant, Y.V., Ravanbakhsh, H.,
Seshia, S.A.: Counterexample-guided synthe-
sis of perception models and control. In: 2021
American Control Conference (ACC), pp.
3447–3454 (2021). IEEE

[67] Dreossi, T., Ghosh, S., Sangiovanni-
Vincentelli, A., Seshia, S.A.: A formalization
of robustness for deep neural networks. arXiv
preprint arXiv:1903.10033 (2019)

	Introduction
	Monitoring Temporal Logic Specifications
	Signal Temporal Logic
	Pastification from bfSTL to pSTL
	Interface-Aware STL

	Architecture
	Syntax Layer
	Semantics Layer
	Integration of RTAMT to ROS
	Integration of RTAMT to MATLAB/Simulink

	Application Programming Interface
	Evaluating STL in Offline
	Evaluating STL in Online
	Evaluating STL on ROS
	Textual Specifications for ROS
	Evaluating STL in MATLAB/Simulink

	Implementations of STL Extended Language
	Experiments
	Comparison of Computational Efficiency
	HSR Simulator in ROS
	MATLAB/Simulink Model

	Related Work
	Future Work and Conclusions

