# Planning in Dynamic Environments Through Temporal Logic Monitoring

#### **Bardh Hoxha and Georgios Fainekos**

AAAI-16 Workshop on Planning for Hybrid Systems

Arizona State University

🖃 bardhh at asu edu

<u>http://www.public.asu.edu/~bhoxha</u>





### Humans & Robots in the near future









### Humans & Robots in the near future











## Example

Car-like model from the Robotics Toolbox (Corke 2011):

 $\dot{x} = v \cos \theta$  $\dot{y} = v \sin \theta$  $\dot{\theta} = \frac{v}{L} \tan \gamma$ 

ν: forward speedL: length of vehicleγ: steering angle

'ARIZONA STATE University -





We present an online planning framework for robotic systems where the environment is dynamically changing and mission compliance specifications may be updated



































#### Linear Temporal Logic

Syntax: Boolean connectives with temporal operators  $\phi ::= \top | \neg \phi | \phi_1 \lor \phi_2 | G \phi | F \phi | \phi_1 U \phi_2$  *G a* - always a *a* - always a *a* - eventually a *x* - *x* -

a U b - a until b

Global LTL Specification

> For example, visit  $R_1$ ,  $R_2$  and  $R_3$ , in that order:  $F(R_1 \wedge F(R_2 \wedge FR_3))$

а

h

time

LTL motion and mission planning tool: LTLvis [1]

[1] Srinivas, S., Kermani, R., Kim, K., Kobayashi, Y., & Fainekos, G. "A graphical language for LTL motion and mission planning.(ROBIO), 2013.

## $\mathsf{LTL}_{\mathsf{vis}}$

- Translate Visual Specification to LTL
- Design the specification so that it is intuitive, while still maintaining expressivity















#### **Metric Temporal Logic**

Syntax: Boolean connectives with temporal operators



Ex:  $F_{[0,5]}(R_1 \wedge F_{[0,4]}(R_2 \wedge F_{[0,8]}R_3))$ 













UNIVERSITY











[1] - Von Hundelshausen, Felix, et al. "Driving with tentacles: Integral structures for sensing and motion." Journal of Field Robotics, 2008.















#### 1. Determine window size



[1] Dokhanchi, A.; Hoxha, B.; and Fainekos, G. On-line monitoring for temporal logic robustness. RV 2014

























Which path should I choose?

#### Selection Criterion:

 $\max_{p \in feasiblePaths} c_1 \times Robustness \ Estimate(p, \phi) + c_2 \times Similarity \ Measure(p)$ 

Where  $\sum c_i = 1$ 











### Example







#### **Future Work**

- Detect Livelock Situations
- Other candidates for the selection criterion
- Maintain future obligations when updating global plan
- Utilize PLAN<sub>HS</sub> with a complex hybrid system





## **Related Work**

- Motion planning over LTL specifications
  - Plaku, E., and McMahon, J. 2013. Combined mission and motion planning to enhance autonomy of underwater vehicles operating in the littoral zone.
  - Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2009. Falsification of LTL safety properties in hybrid systems.
  - Loizou, S. G., and Kyriakopoulos, K. J. 2004. Automatic synthesis of multi-agent motion tasks based on LTL specifications.
- Planning with MTL specifications
  - Kabanza, F. Synchronizing multiagent plans using temporal logic specifications. 1995.
  - Karaman, S., and Frazzoli, E. Vehicle routing problem with metric temporal logic specifications. 2008b.
- Controller synthesis for motion planning of dynamical systems with TL
  - Fainekos, Georgios E., Hadas Kress-Gazit, and George J. Pappas. "Temporal logic motion planning for mobile robots." ICRA 2005.
  - Kloetzer, M., and Belta, C. "Temporal logic planning and control of robotic swarms by hierarchical abstractions". Robotics, IEEE Tran. 2007.
- Online Planning with LTL specifications
  - Ding, X.; Lazar, M.; and Belta, C. LTL receding horizon control for finite deterministic systems. 2014.





#### Acknowledgements



Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.





# Thank you!



