
VISPEC: A graphical tool for elicitation of MTL requirements

Bardh Hoxha1, Nikolaos Mavridis2 and Georgios Fainekos1

Abstract— One of the main barriers preventing widespread
use of formal methods is the elicitation of formal specifications.
Formal specifications facilitate the testing and verification pro-
cess for safety critical robotic systems. However, handling the
intricacies of formal languages is difficult and requires a high
level of expertise in formal logics that many system developers
do not have. In this work, we present a graphical tool designed
for the development and visualization of formal specifications by
people that do not have training in formal logic. The tool enables
users to develop specifications using a graphical formalism
which is then automatically translated to Metric Temporal
Logic (MTL). In order to evaluate the effectiveness of our tool,
we have also designed and conducted a usability study with
cohorts from the academic student community and industry.
Our results indicate that both groups were able to define formal
requirements with high levels of accuracy. Finally, we present
applications of our tool for defining specifications for operation
of robotic surgery and autonomous quadcopter safe operation.

I. INTRODUCTION

As robots become commercially available, their correct
operation is of paramount importance. Especially for safety
critical systems, safety must be guaranteed. As for example
in autonomous vehicles [24] and medical robots [17], [13].

Safety requirements are usually expressed in natural lan-
guage, which is inherently ambiguous, in general. When it is
used for defining system specifications, this ambiguity may
lead to misunderstandings between development teams that
may result in increased costs and delays in development. If
the misunderstandings are not detected, then a product that
does not meet the intended specifications will be developed.

Ideally, specifications should be defined in a mathematical
language, using formal logics. This not only removes ambi-
guity, but also allows system developers to utilize a vast set
of methods [22] that have been developed by the academic
community for testing and verification of systems. The aca-
demic community has also developed automatic tools such as
S-TALIRO [2], [11], FAPAS [25], SpaceEx [9], CheckMate
[19], FLOW [4], Breach [6], C2E2 [7], KeYmaera [18] and
STRONG [5] that enable developers to conduct system testing
and verification.

Even though it has been shown, that utilizing formal
specifications can lead to improved testing and verification
[8], the industry still utilizes natural language as the premier
approach in defining specifications. One may conjecture
that the most important reason for doing so is because the
development of specifications through a formal logic requires

1 Bardh Hoxha and Georgios Fainekos are with the School of Computing,
Informatics and Decision Systems Engineering, Arizona State University
{bhoxha,fainekos}@asu.edu

2Nikolaos Mavridis is with the Interactive Robots and Media Lab and
NCSR Demokritos nmav@alum.mit.edu

a level of mathematical training that many users may not
have [23]. Furthermore, even for expert users, writing formal
specifications is an error prone task [10]. As a result, the
industry has been less willing to utilize formal specifications
in their processes.

In this work, we present a graphical formalism that enables
non-expert users to develop formal specifications for control
systems. The formalism enables the visualization of a large
fragment of MTL. The main challenge in the development
of the formalism lies in finding the right balance between
expressive power and ease-of-use. It is designed for use with
systems and signals and enables both event and time based
specifications. This is the first time that a visual formal
language representation is developed for specifications for
Cyber-Physical Systems (CPS). Here by CPS we define
any system that has discontinuous nonlinear dynamics and
complex safety critical requirements. Prime examples are
medical robotics and autonomous vehicles. A specification
visualization tool has been developed based on the graphical
formalism presented in this work. To evaluate the usefulness
of the tool in terms of usability and ease-of-use, we have
conducted a usability study.
SUMMARY OF CONTRIBUTIONS:

• We present a graphical formalism that enables the
development of formal specifications.

• We present the visual specification tool based on the
graphical formalism.

• We conducted a usability study to evaluate the tool.
• Through the usability study we proved that both non-

expert users and expert users are able to define formal
requirements accurately using the tool, and derived
suggestions for improvement of the tool.

• We present applications of the tool for real-world robots.

RELATED WORKS: In order to help address the formal
specification challenge, various graphical formalisms have
been studied in the past [20], [1], [15], [3], [26], [21]. The
most relevant works appear in [3] and [26]. In [3], the authors
extend Message Sequence Charts and UML 2.0 Interaction
Sequence Diagrams to propose a scenario based formalism
called Property Sequence Chart (PSC). The formalism is
mainly developed for specifications on concurrent systems.
In [26], PSC is extended to Timed PSC which enables the
addition of timing constructs to specifications.

In terms of usability studies for formal requirements very
few works exist. In [23], the authors study the ability
of expert users to develop requirements in Z. A related
usability study for requirement representation is presented
in [16], where the authors present and evaluate a system

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9994-1/15/$31.00 ©2015 IEEE 3486

for generating, troubleshooting and executing controllers for
robots using natural language.

II. VISUAL SPECIFICATION TOOL

The Visual Specification Tool (VISPEC)1 enables the
development of formal specifications for CPS. Users can
develop requirements in a graphical formalism which is then
translated to Metric Temporal Logic (MTL) [14].

The topic of capturing requirements through graphical
formalisms has been studied in the past [20], [1], [15], [3],
[26]. However, to the best of the authors knowledge, the work
presented here is the first attempt to do so specifically aimed
for the development of specifications for CPS. The initial
idea for the graphical formalism was first presented in [11]
while the tool was still in the early stages of development.
However, in this work we present an updated version of the
tool along with its usability study. The improvements over
the previous version include: a more streamlined interface;
an updated representetion of signals in the interface; and an
updated template definition process.

For CPS specifications, it is often needed to account for
both timing and event sequence occurrence. Both of these are
necessary for reasoning over systems and signals. Consider
the specification 2[0,5]((speed > 100) → 2[0,5](rpm >
4000)). It states that whenever within the first 5 seconds,
the vehicle speed goes over 100, then from that moment
on, the engine speed (rpm), for the next 5 seconds, should
always be over 4000. Here both the sequence and timing of
the events are of critical importance.

To ensure that the tool can be utilized by non-expert users,
the following goals for the tool are defined: 1) The user
interface is intuitive to use, i.e, it does no have a high learning
curve; 2) The visual representation of the requirements is
visualy distinct and unambiguous; 3) There is a one-to-one
mapping from the visual representation of the requirement
and the corresponding requirement in MTL.

The set of specifications that can be generated from this
graphical formalism is a proper subset of the set of MTL
specifications. Formally, the following grammar produces
the set of formulas that can be expressed by the proposed
graphical formalism:

S −→ ¬T | T
T −→ A | B | C
A −→ P | (P∧A) | (P⇒A)
B −→ 2ID | 3ID
C −→ 2I3ID | 3I2ID
D −→ p | (p→A) | (p∧A) | (p→B) | (p∧B)
P −→ p | 2Ip | 3Ip

where p is an atomic proposition. In practice, the atomic
propositions are automatically derived from the templates.

Throughout the development process of the formalism,
it was noticed that the more expressive the formalism, the
more challenging to use it became. Therefore, we focused
on several widely used classes of specifications which are

1Available at https://sites.google.com/a/asu.edu/
s-taliro/vispec

described in Table I. Examples of the classes of specifications
are presented in the rest of this section.

To make the tool easier to use, we placed several con-
straints on the types of signals used. Specifically, the signals
and requirements are one dimensional. This enables clear and
structured visualization on a two dimensional user interface.

The main building blocks of the formalism are templates.
These are used for defining temporal logic operators, their
timing intervals, and the expected signal shape. The user
starts with an empty template and a setup assistant presents
the user with a sequence of dialog boxes that aid in the de-
velopment of the template. The process is context dependent
where each option selection leads to a potentially different
set of options for the next step.

The first step in the template definition process is to
define the temporal operator. Among the choices (and their
corresponding MTL symbols) are: Always (2), At Least
Once (3), Eventually Always (32), Repeatedly Often and
Finally (23), and now. The options available enable users to
define a wide range of specifications. The following sections
will present examples of a subset of formulas that can be
generated using this graphical formalism.

After the temporal operator is selected, the user sets
the timing bounds for it. Many users might have difficulty
defining timing bounds, especially for specifications with
temporal operators such as Eventually Always (32) and
Repeatedly Often and Finally (23). To illustrate the process,
the tool provides a fill-in-the-blanks sentence format to
the user. For example, if the operator Eventually Always
is selected, the user will have to complete the following
sentence with the timing bounds: “Eventually, between
and seconds, the signal will become true, and from that
point on, will stay true in the next to seconds”.
The set of timing intervals are visualized with color shaded
regions in the template.

The next step in the process is in defining whether the
predicate will evaluate to true when the signal is above
or below a set threshold. For example, for the Always (2)
operator, a signal is selected that is either always above or
below a specified threshold. Once either option is selected,
various signals that fit the requirement are automatically
generated and presented visually. Instead of drawing the
signal, the user will select from one of the generated options.
Consider the following example:

Example 1 A specification from the fragment of MTL for-
mulas called Safety MTL specifications is presented. Specif-
ically, the specification φ1 = 2[0,36](rpm < 4000). The
formula states that in the next 36 seconds, engine speed
should always be less than 4000. The corresponding graph-
ical formalism for this formula is presented in Fig. 1. Note
that, in regards to the specification, the signal can be of any
shape as long as it is always below the 4000 threshold.

Consider the following example for the At Least Once (3)
temporal operator:

Example 2 A specification from the fragment of MTL for-

3487

TABLE I: Classes of specifications expressible with the graphical formalism

Specification Class Explanation

Safety Specifications of the form 2φ used to define specifications where φ should always be true.
Reachability Specifications of the form 3φ used to define specifications where φ should be true at least once in the future (on now).
Stabilization Specifications of the form 32φ used to define specifications that, at least once, φ should be true and from that point

on, stay true.
Recurrence Specifications of the form 23φ used to define specifications that, it is always the case, that at some point in the future,

φ is true.
Implication Specifications of the form φ→ ψ requires the ψ should hold when φ is true.
Reactive Response Specifications of the form N(φ → Mψ), where N and M are temporal operators, used to define an implicative

response between two specifications where the timing of M is relative to timing of N .
Conjunction Specifications of the form φ ∧ ψ used to define the conjunction of two sub-specifications
Non-strict Sequencing Specifications of the form N(φ∧Mψ), where N and M are temporal operators, used to define a conjunction between

two specifications where the timing of M is relative to timing of N .

mulas called Reachability MTL specifications is presented.
Specifically, the specification φ2 = 3[0,39](speed > 100).
The formula states that eventually, within the next 39 sec-
onds, the vehicle speed will go over 100. The corresponding
graphical formalism for this formula is presented in Fig. 2.
Again, in regards to the specification, the signal can be of
any shape as long as at one point, within the timing bounds
of the temporal operator, it is above the 100 threshold.

Fig. 1: Example 1: The graphical formalism for the Safety
MTL specification φ1 = 2[0,36](rpm < 4000).

Fig. 2: Example 2: The graphical formalism for the Reach-
ability MTL specification φ2 = 3[0,39](speed > 100).

For more examples of specifications and their correspond-
ing graphical formalism see the technical report [12]. In
Section VI, we present two application specifications that
illustrate the various interactions between templates.

The variety of templates and the connections between
them allow users to express a wide variety of specifications.

III. GRAPHICAL FORMALISM

The specification development process in VISPEC is di-
vided in two sub processes. First, given a user input in the
VISPEC tool, it is translated to a tree structure where the
nodes contain template information such as temporal oper-
ators, their corresponding timing parameters, group and the
value threshold for the predicates. Secondly, the generated
tree structure is traversed by a recursive algorithm to generate

VISPEC
Tool

Graphical
Formalism

User
Input

Tree
Structure MTL

Fig. 3: The specification development process using VISPEC

the MTL formula. There is a bijection between the visual
representation of a specification and the MTL formula. An
overview of the process is provided in Fig. 3.

An example of the tree structure for MTL formula φ =
2(a ∧ 3b) → (2c ∧ 3(d → (a ∧ 2b))) is shown in Fig.
4. The recursive algorithm for traversing the tree structure
and generating the MTL formula is presented in Alg. 1.
Note that the functions ADDPARENCONN{A,B,C,D} add
the parenthesis and connectives between predicates. A more
detailed presentation of the algorithm is presented in the
technical report [12].

Root

N1, 1,2, a

N12, 1,3, b

N3,2,ε,ε

N31, 2,2, c N32, 2,3, d

N321, 3, ε, a N322, 3,2, b

Fig. 4: The corresponding tree structure for formula φ =
2(a ∧ 3b) → (2c ∧ 3(d → (a ∧ 2b))) where a,b,c and
d are predicates. Each node is composed of a node name,
group number, temporal operator, and predicate. The symbol
ε indicates empty parameters.

IV. USABILITY STUDY

A. Hypotheses

The aim of the study is to evaluate whether VISPEC
enables users to develop formal specifications. Two groups
were considered:

1) Non-expert users: These are users who declared that
they have no experience in working with requirements.

2) Expert users: These are users who declared that they
have experience working with system requirements.
Note that they do not necessarily have experience in
writing requirements using formal logics.

3488

Algorithm 1 WriteMTL - Algorithm for generating the MTL
formula given a tree structure of the graphical formalism

Input: Tree Structure T = 〈V,E〉 where v ∈ V and v =
〈G,Op, S〉 where G is the group, Op is the temporal
operator and S is the predicate string; formula φ.

Output: φ
1: function WRITEMTL(T, φ)
2: C ← T.getChildren().
3: sC ← size(C)
4: for node i in C do
5: φ ← CONC(φ, i.Op)
6: if i.isParent then
7: if not(i.S.isEmpty) then
8: subC ← t.getChildren(i)
9: φ ← ADDPARENCONNA(φ, subC)

10: φ ← WRITEMTL(i.subtree, φ)
11: φ ← ADDPARENCONNB(φ, subC)
12: else
13: φ ← CONC(φ, ’(’)
14: φ ← WRITEMTL(i.subtree, φ)
15: φ ← ADDPARENCONNC(sC, φ)
16: end if
17: else
18: φ ← CONC(φ, i.S)
19: φ ← ADDPARENCONND(φ, sC)
20: end if
21: end for
22: end function

Some of the interesting questions we wanted to investigate,
which are also presented as hypotheses in Tab. II, are:
• Whether the graphical formalism enables non-experts

and experts to formalize requirements accurately.
• How well the expert cohort performs in comparison to

the non-expert cohort.
• How user friendly and easy-to-use VISPEC is.
Writing formal requirements is a challenging task that

requires a significant amount of training. Therefore, it is safe
to assume that we can reject Hypothesis 1a as supported by
our informal experience. Hypothesis 2a will be tested in a
future work. In addition, we analyze user interaction and
behavior to measure the ease-of-use of the tool.

B. Demographics
The non-expert cohort was comprised of twenty subjects

from the student community of Arizona State University.
Most of the subjects are from an engineering background
with little to no experience working with requirements. The
student demographics are presented in Tab. III.

The expert subject cohort was comprised of ten subjects
from the industry in the Phoenix area. The subjects have
experience working with specifications and come from an
engineering background.

C. Experimental Design
Each subject received a task list to complete. The task

list contained ten tasks related to automotive system speci-
fications. Each task asked the subject to formalize a natural

language specification through VISPEC and generate an
MTL formula. The list of tasks is presented in Table VI.

The tasks become more complex throughout the session.
The higher the number of the task, the more steps necessary
to complete the task successfully.

Each session is at most 45 minutes long. Subjects received
a one minute and thirty second tutorial on using VISPEC to
develop specifications. The computer screen was recorded
and actions were logged for each session. The subjects also
completed a demographic and post-completion questionnaire.

D. Metrics

Two metrics are used for performance evaluation:
Task completion: this is a binary measure, which indicates

whether users were able to finish the task within the set time.
Measure of Accuracy: a value from one to five which is

used to quantify the accuracy of subject generated formulas.
The formulas are graded by formal specification experts
which were given the following two suggested criteria: a)
How accurate the meaning of the natural language specifica-
tion is captured, and b) Whether the inaccuracies in the user
submitted formula can be easily debugged and corrected in
the testing and verification process. Furthermore, in order to
decrease subjectivity, the following instructions were given
to the expert graders in order to anchor the meanings of
the five different grades of the scale used: A grade of one
indicates that the generated formula is totally inaccurate. A
grade of two indicates that the formula is mostly inaccurate.
A grade of three indicates an inaccurate formula which can
be easily debugged and corrected to the proper formal logic
specification by formal specification experts and thus this is
the minimum acceptable satisfactory result. A grade of four
indicates that the formula is inaccurate but can be debugged
and improved by automated specification debugging tools.
A grade of five indicates that the generated formula is
completely accurate. The group of expert graders consisted
of experts in formal methods and logic.

V. RESULTS

1) Average grade per task: For both cohorts, the task
performance is presented in Fig. 8. It can be observed that
overall, the mean grade per task for both cohorts is high.

2) Hypothesis 1b: To test Hypothesis 1b, we need to
establish what is an acceptable threshold for accuracy in
order to test the hypothesis. As discussed in the metrics
section, we claim that a mean grade higher than three
is an acceptable threshold for non-expert users. Therefore,
hypothesis 1b is reduced to the null hypothesis: the mean
grade per user is less than or equal to three for non-experts.

Let us define the average grade per user as a random
variable Ȳ . Specifically, Ȳ : Ω → R, where Ω ∈ {y : 1 ≤
y ≤ 5}. The sample data from 20 subjects has a mean grade
of 4.43 and standard deviation of 0.41. We test for normality
with the Kolmogorov-Smirnov test, the Chi-square g.o.f test,
and the Anderson-Darling test and all three fail to reject the
null hypothesis that the data follows the normal distribution.
If we assume that the data constitute a random sample from

3489

TABLE II: Hypotheses and test results with level of significance α = 0.05. User groups as defined in section IV.A.

Hypothesis Reject null hypothesis

1a Non-expert users are able to define formal requirements accurately using formal logics such as MTL.
1b Non-expert users are able to define formal requirements accurately using the Visual Specification Tool. Yes
2a Expert users from the industry are able to define formal requirements accurately using formal logics such as MTL.
2b Expert users from the industry are able to define formal requirements accurately using the Visual Specification Tool. Yes
3alt The mean grade per user for expert users is greater the mean grade per user for non-expert users. Yes
Txalt The mean grade per task x for industry users is greater than to the mean grade per task x for non-expert users. Partially

TABLE III: Hypothesis 1b Subject Demographics

Freshman 2 Computer Science 5 Male 12
Sophomore 2 Software Engineering 3 Female 8

Junior 5 Electrical Engineering 3
Senior 5 Mechanical Engineering 6

Masters 4 Engineering, other 3
PhD 2

a normal distribution, i.e. Ȳ ∼ N , we can use the t-statistic
to test the hypothesis. We reject the null hypothesis with a
p-value very close to 0.

3) Hypothesis 2b: Similarly, we test Hypothesis 2b for
the expert cohort. Hypothesis 2b is reduced to the null
hypothesis: the mean grade per user is less than or equal to
three for expert users. We test for normality as in the previous
case and all three test fail to reject the null hypothesis that
the data follows the normal distribution.

Consider the average grade per user as a random variable
Z̄. Specifically, Z̄ : Ω → R, where Ω ∈ {y : 1 ≤ y ≤ 5}.
The sample data from 10 subjects has a mean grade of 4.76
and standard deviation of 0.26. If we assume that the data
constitute a random sample from a normal distribution, i.e.
Z̄ ∼ N we can use the t-statistic to test the hypothesis.We
reject the null hypothesis with a p-value very close to 0.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0

50

100

150

200

250

T
im

e
(s

e
c
.)

Task completion time for non−expert and expert cohorts

non−expert

expert

Fig. 5: Example 2: The graphical formalism for the Reach-
ability MTL specification φ2 = 3[0,39](speed > 100).

TABLE IV: VISPEC improvements

Improve... Prime Indicators

1. the process of creating child templates misclicks; user feedback
2. the tutorial by placing more emphasis

on the difference between implication
and conjunction between templates

task accuracy grade

3. the visual representation of grouped
templates

task accuracy grade;
user feedback

4) Hypothesis 3alt: To test Hypothesis 3alt, we conduct
a two sample t-test. The p-value returned from the test is
0.0024 and for a significance level of 0.01, we reject the
null hypothesis. Therefore we claim that the mean grade per
user for expert users is greater than the mean grade per user
for non-experts.

5) Hypothesis Tx: Next, we compare the mean grade of
both cohorts in regards to each task. A two sample t-test
is conducted for each task. The results for the tests are
presented in Tab. V. Task 9 is the most difficult task when
it comes to the number of errors generated, and this is the
only task where there is a clear difference in performance
between the expert and non-expert cohorts.

TABLE V: Hypothesis testing of Txnull with α = 0.05

x Rej. Txnull p-val. Conclusion

4 No 0.065 potentially true with more investigation
5 No 0.165 false
6 No 0.074 potentially true with more investigation
7 No 0.100 potentially true with more investigation
8 No 0.424 false
9 Yes 0.016 true

10 No 0.063 potentially true with more investigation

We observe that the only null hypothesis rejected is for
task nine indicating that the mean grade for expert users is
greater than the mean grade for non-expert users. The subject
accuracy grades over tasks for is shown in Fig. 8.

6) Ease-of-use analysis: One indicator for the ease-of-use
of the application is the total time spent per task. As can be
observed in Fig. 5, the mean time spent per task on average
is at most 167 seconds. For easier identification of points of
difficulty, we divided each task into subtasks. It was observed
that there is no correlation between the length of time spent
in a subtask and correctness. This potentially indicates, as
also verified by correlation testing between times and grades,
that the subjects were unaware of mistakes in the process.
From these and other observations, such as misclicks, and
subject feedback, we have developed a set of refinements
on the tool to improve the user experience. A partial list of
improvements is presented in Table IV.

VI. APPLICATIONS

A. Robotic Surgery

In the last few decades, there has been a significant
increase in the number of robotics systems, especially in the
health care system. They have been successfully introduced
in multiple areas such as rehabilitation, telesurgery, physical
therapy, elderly care, and remote physician care. In the
following, we will focus on autonomous robotic systems for
surgery where of paramount importance is the safety of these
systems [13]. Specifically, we will consider a model of a
robotic serial link manipulator as presented in [17].

One of the main tasks in surgery is the puncturing action.
The high precision and repeatability of the process, make
robot systems ideal for this task. Also, the trauma induced

3490

TABLE VI: Task list with automotive system specifications presented in natural language

Task Natural Language Specification

1. Safety In the first 40 seconds, vehicle speed should always be less than 160.
2. Reachability In the first 30 seconds, vehicle speed should go over 120.
3. Stabilization At some point in time in the first 30 seconds, vehicle speed will go over 100 and stay above for 20 seconds.
4. Recurrence At every point in time in the first 40 seconds, vehicle speed will go over 100 in the next 10 seconds.
5. Recurrence It is not the case that, for up to 40 seconds, the vehicle speed will go over 100 in every 10 second period.
6. Implication If, within 40 seconds, vehicle speed is above 100 then within 30 seconds from time 0, engine speed should be over 3000.
7. Reactive Response If, at some point in time in the first 40 seconds, vehicle speed goes over 80 then from that point on, for the next 30

seconds, engine speed should be over 4000.
8. Conjunction In the first 40 seconds, vehicle speed should be less than 100 and engine speed should be under 4000.
9. Non-strict sequencing At some point in time in the first 40 seconds, vehicle speed should go over 80 and then from that point on, for the next

30 seconds, engine speed should be over 4000.
10. Long sequence If, at some point in time in the first 40 seconds, vehicle speed goes over 80 then from that point on, if within the next 20

seconds the engine speed goes over 4000, then, for the next 30 seconds, the vehicle speed should be over 100.

around the region is much lower and therefore the recovery
process for the patient is quicker. To complete the puncturing
action, the robot has to move towards the puncturing location.
Test the tissue for various indicators to calibrate for optimal
puncture, bring the puncturing needle to a perpendicular
position and, finally, puncture with correct force and angle. If
the force or angle is miscalculated, it might pose unintended
harm to the patient. Consider the specifications from [17]
that should hold on a serial manipulator for puncturing:

1) From [17]: The force applied to the patient by the end
effector is always less than a given threshold, except
for the puncturing subtask. Formally, assuming that
the operation time is 30 seconds, we have: φs1 =
2[0,30](¬puncturing → f ≤ fmax).

2) From [17]: The task is feasible, and the position of
the needle once it stops is inside the target region
R. Formally, assuming that the operation time is 40
seconds, we have: φs2 = 3[0,40](Stop ∧ needle ∈ R)).

3) Also, other requirements can be expressed for such a
system. For example, the end effector speed should not
be less than vmin and should not be greater than vmax.
Formally: φs3 = 2[0,40](vmin < veff < vmax)

The VISPEC tool is utilized to develop the specifications
for the robotic manipulator. For φs1, the specification is
presented in Fig. 6. We assume that fmax = 10. The visual
representations with VISPEC for item 2 and 3 are presented
in the technical report [12].

Fig. 6: The graphical formalism for φs1.

B. Quadcopter

In recent years, quadcopters and other unmanned aerial
vehicles (UAVs) have become a major focus for research both

in the academic community and industry. Among others, they
are used in military operations, nuclear disaster assessment,
firefighting and entertainment. The challenges faced in devel-
oping these devices and their control algorithms come from
the flight dynamics and the highly dynamical environment
that they operate in. Also, as the complexity of these devices
increases, so do the performance and reliability requirements.

Consider the following specifications for a quadrotor:
1) The absolute value of the pitch and roll angle should

always be bellow certain thresholds. Formally, assuming
that the operation time is 40 seconds, we have: φq1 =
2[0,40](|α| < αmax) ∧2[0,40](|β| < βmax).

2) If distance to the target region is smaller than a cer-
tain threshold d, then for then next 20 seconds, the
speed should not exceed vmax. Formally, assuming that
the operation time is 40 seconds, we have: φq1 =
2[0,40](dist < d→ 2[0,20](v < vmax)).

The VISPEC tool is utilized to develop the specifications
for the quadrotor. For φq1, the specification is presented in
Fig. 7. We assume that αmax = 45 deg, βmax = 45 deg and
γmax = 60 deg. The visual representations with VISPEC
for item 2 is presented in the technical report [12].

Fig. 7: The graphical formalism for φq1.

VII. CONCLUSION AND FUTURE WORK

As robots and other cyber-physical systems become more
complex and ubiquitous, so does the need for better testing
and verification. A set of formal methods that improve
this process require some formal representation of system
specifications. In this work, a graphical formalism and a tool

3491

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

1

2

3

4

5

6
Bar plot of mean grade and std. dev. over tasks for non−expert users

G
ra

d
e

1
2
3
4
5
6

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Task

Box plot of grades over tasks for non−expert users

G
ra

d
e

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

1

2

3

4

5

6
Bar plot of mean grade and std. dev. over tasks for expert users

1
2
3
4
5
6

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Task

Box plot of grades over tasks for expert users

Fig. 8: Subject accuracy grades over tasks for both the expert and non-expert cohorts.

that enables users to easily develop formal specifications are
presented. The VISPEC tool enables users who have little to
no mathematical training in formal logics to develop formal
specifications, as was verified by a usability study that was
conducted in order to evaluate the usefulness of the tool
and to get insights on potential improvements. The tool was
utilized to formalize specifications for two robots.

Last but not least, we would like to investigate if the poten-
tial inaccuracies of the specifications that users generate with
the tool can be attributed mainly to the inherent ambiguity
of the natural language descriptions which were given, or if
not, which other factors contribute and to what extent. Thus,
in an improved usability study, we aim towards exploring
alternative methods of generation of requirements from engi-
neers for a system, that do not involve the administration of a
natural language description by the experimenter. This would
enable us to study to what extent inherent natural language
ambiguity causes the observed less-than-perfect accuracy that
is sometimes, even if rarely, exhibited.

ACKNOWLEDGMENT: Partial support under NSF awards
CNS-1319560, CNS-1116136, IIP-1454143, IIP-1361926
and the NSF I/UCRC Center for Embedded Systems. We
thank all the participants in the usability study and the
reviewers for the detailed reviews.

REFERENCES

[1] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual timed
event scenarios. In Proceedings of the 26th Int. Conference on
Software Engineering, pages 168–177. IEEE Computer Society, 2004.

[2] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankara-
narayanan. S-taliro: A tool for temporal logic falsification for hybrid
systems. In Tools and algorithms for the construction and analysis of
systems, volume 6605 of LNCS, pages 254–257. Springer, 2011.

[3] M. Autili, P. Inverardi, and P. Pelliccione. Graphical scenarios for
specifying temporal properties: an automated approach. Automated
Software Engineering, 14(3):293–340, 2007.

[4] X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An analyzer
for non-linear hybrid systems. In Computer-Aided Verification (CAV),
volume 8044 of LNCS, pages 258–263. Springer-Verlag, 2013.

[5] Y. Deng, A. Rajhans, and A. A. Julius. Strong: A trajectory-based
verification toolbox for hybrid systems. In Quantitative Evaluation of
Systems, pages 165–168. Springer, 2013.

[6] A. Donze. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In Computer Aided Verification, volume 6174 of
LNCS, pages 167–170. Springer, 2010.

[7] P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of
annotated models from executions. In Proc. of the Eleventh ACM
Int. Conf. on Embedded Software, page 26. IEEE Press, 2013.

[8] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verifica-
tion of automotive control applications using s-taliro. In Proceedings
of the American Control Conference, 2012.

[9] G. Frehse, C. L. Guernic, A. Donz, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex: Scalable
verification of hybrid systems. In Proceedings of the 23d CAV, 2011.

[10] G. J. Holzmann. The logic of bugs. In Proc. of the 10th ACM SIGSOFT
symp. on Foundations of soft. eng., pages 81–87. ACM, 2002.

[11] B. Hoxha, H. Bach, H. Abbas, A. Dokhanchi, Y. Kobayashi, and
G. Fainekos. Towards formal specification visualization for testing
and monitoring of cyber-physical systems. In Int. Workshop on Design
and Implementation of Formal Tools and Systems. October 2014.

[12] B. Hoxha, N. Mavridis, and G. Fainekos. VISPEC: a graph-
ical tool for elicitation of MTL requirements. Available at
https://sites.google.com/a/asu.edu/s-taliro/ViSpecTechRpt15.pdf.

[13] Y. Kouskoulas, D. W. Renshaw, A. Platzer, and P. Kazanzides. Certify-
ing the safe design of a virtual fixture control algorithm for a surgical
robot. In C. Belta and F. Ivancic, editors, Hybrid Systems: Computa-
tion and Control (part of CPS Week 2013), HSCC’13, Philadelphia,
PA, USA, April 8-13, 2013, pages 263–272. ACM, 2013.

[14] R. Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299, 1990.

[15] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal
logic for scenario-based specifications. In Tools and Alg. for the
Construction and Analysis of Systems, pages 445–460. Springer, 2005.

[16] C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit.
Provably correct reactive control from natural language. Autonomous
Robots, 38(1):89–105, 2015.

[17] R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, and T. Villa. Robotic
surgery. Robotics & Automation Magazine, IEEE, 18(3):24–32, 2011.

[18] A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem prover for
hybrid systems. In A. Armando, P. Baumgartner, and G. Dowek,
editors, International Joint Conference on Automated Reasoning,
volume 5195 of LNCS, pages 171–178. Springer, 2008.

[19] B. I. Silva and B. H. Krogh. Formal verification of hybrid systems
using CheckMate: a case study. In Proceedings of the American
Control Conference, volume 3, pages 1679 – 1683, June 2000.

[20] M. H. Smith, G. J. Holzmann, and K. Etessami. Events and constraints:
A graphical editor for capturing logic requirements of programs. In Re-
quirements Engineering, 2001. Proceedings. Fifth IEEE International
Symposium on, pages 14–22. IEEE, 2001.

[21] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos. A
graphical language for LTL motion and mission planning. In Robotics
and Biomimetics (ROBIO), 2013 IEEE International Conference on,
pages 704–709. IEEE, 2013.

[22] S. Tripakis and T. Dang. Model-Based Design for Embedded Systems,
chapter Modeling, Verification and Testing using Timed and Hybrid
Automata, pages 383–436. CRC Press, 2009.

[23] R. Vinter, M. Loomes, and D. Kornbrot. Applying software metrics
to formal specifications: A cognitive approach. In Software Metrics
Symposium, 1998. Metrics 1998. Proceedings. Fifth International,
pages 216–223. IEEE, 1998.

[24] T. Wongpiromsarn, S. Mitra, A. Lamperski, and R. M. Murray. Ver-
ification of periodically controlled hybrid systems: Application to an
autonomous vehicle. ACM Trans. Embed. Comput. Syst., 11(S2):53:1–
53:24, Aug. 2012.

[25] B. Yordanov, J. Tmov, I. ern, J. Barnat, and C. Belta. Formal anal-
ysis of piecewise affine systems through formula-guided refinement.
Automatica, 49(1):261 – 266, 2013.

[26] P. Zhang, B. Li, and L. Grunske. Timed property sequence chart.
Journal of Systems and Software, 83(3):371–390, 2010.

3492

