
Formal Requirements-Driven Analysis of Cyber Physical Systems

by

Bardh Hoxha

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2017 by the
Graduate Supervisory Committee:

Georgios Fainekos, Chair
Hessam Sarjoughian

Ross Maciejewski
Heni Ben Amor

ARIZONA STATE UNIVERSITY

August 2017

ABSTRACT

Testing and Verification of Cyber-Physical Systems (CPS) is a challenging prob-

lem. The challenge arises as a result of the complex interactions between the com-

ponents of these systems: the digital control, and the physical environment. Fur-

thermore, the software complexity that governs the high-level control logic in these

systems is increasing day by day. As a result, in recent years, both the academic com-

munity and the industry have been heavily invested in developing tools and method-

ologies for the development of safety-critical systems. One scalable approach in testing

and verification of these systems is through guided system simulation using stochas-

tic optimization techniques. The goal of the stochastic optimizer is to find system

behavior that does not meet the intended specifications.

In this dissertation, three methods that facilitate the testing and verification pro-

cess for CPS are presented:

1. A graphical formalism and tool which enables the elicitation of formal require-

ments. To evaluate the performance of the tool, a usability study is conducted.

2. A parameter mining method to infer, analyze, and visually represent falsifying

ranges for parametrized system specifications.

3. A notion of conformance between a CPS model and implementation along with

a testing framework.

The methods are evaluated over high-fidelity case studies from the industry.

i

. . . to my loving parents . . .

Naim & Nazife

ii

ACKNOWLEDGMENTS

I enjoyed six sunny years in Tempe, Arizona. As part of the Cyber-Physical

Systems lab at ASU, I had the opportunity to work with wonderful people from

both the academic community and the industry. My experiences throughout this

time include training at NASA, close collaboration with researchers from Toyota

and Bosch, as well as work with the Air Force Research Labs, and Wright Brothers

Institute. These experiences have been invaluable and have all in some shape or form

contributed to the development of the work presented in this thesis.

First and foremost, I would like to express my deepest gratitude to my advisor,

Georgios Fainekos, for the continuous support and supervision. He has guided me

through the research process ranging from what classes to take all the way to writing

papers. He was always available to meet and discuss ideas. His drive, hard work, and

commitment to research and discovery has been a continuous source of inspiration.

I would like to thank the committee members Hessam, Ross, and Heni for their

insights and comments. A special thanks goes to Charles Colbourn, for inviting me

to be part of his legendary teaching team in theoretical computer science, and for

showing me how to get the best out of people through respect and honesty.

I would also like to thank my friends at the CPS lab. Kangjin, for the stimulating

discussions, and for inspiring me to stay healthy and participate in many running

events. Houssam and Erkan for our close collaboration. Special thanks go to my

colaborators Adel and Shakiba, for providing the model instrumentation for the hy-

brid nonlinear system in Section 5.3. Joe, for the great socio-economic discussions at

lunch time. Ramtin, Shashank, Hengyi, Parth, Shih-Kai and Yashwanth for the work

and fun times we shared together. I would like to thank the team from the Toyota

Technical Center. Ken Butts, Jyotirmoy Deshmukh, James Kapinski, Xiaoqing Jin

for the friendship and close collaboration throughout the years.

iii

I moved to the US before I reached my twenties. I would not have been able

to complete my studies without the love and support from my guardians away from

home, Fekrije and Bujar Konjusha, Njomza and Faton Kaja, and Hyrie and Sadet

Berisha who in ways they will never understand, made me a better person. I owe a

lot to them for the wonderful years and for sharing their homes with me. I would also

like to thank my friends Mentor, Alvaro, Valdrin and Osama. Our Thursday nights

and trips throughout the west coast will always be remembered.

I would like to thank my uncles Gëzim Konjusha and Murat Cërvadiku, my aunts

Kimete Dida, Laura Hajdini, Valbona Salihu, Zymryte Avdiu and their families for

the endless support throughout the years. I would like to pay tribute to the memory of

my grandmother Mirishahe Konjusha, for her unconditional love, and to the memory

of my uncle Sabri Hoxha, for nurturing me and countless generations in the art of

mathematics, for unveiling the beauty within mathematical equations.

I would like to thank my family, my betters. My siblings Hana, Ylli and Zana

and their significant others. My loving parents Naim and Nazife. With your hard

work and determination, in a time of terrible economical hardship for the region, you

were able to support and encourage my pursuit for knowledge and betterment. I have

received so much more than my share of good fortune in my life, and a large part of

that comes from you.

Finally, I would like to thank Adelina, my partner. Thank you for being the

person who lights my soul on fire every day. She is my treasure who has given me

what I value most – her love.

My dissertation work was supported in part by the National Science Foundation

under Grants CNS-1017074, CNS 1116136, CNS 1319560, CNS 1350420, IIP 1454143,

CNS 1446730, IIP-1361926, by the NSF I/UCRC Center for Embedded Systems, and

Air Force Research Labs Summer of Innovation 2017 program.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 Testing and Verification of CPS . 1

1.1.1 V & V Terminology . 4

1.1.2 Model-Based Design . 7

1.2 Research Topics . 7

1.2.1 Specification Elicitation . 8

1.2.2 Multiple Parameter Specification Mining. 9

1.2.3 Practical Algorithms for Conformance . 10

1.3 Summary of Contributions . 11

2 SYSTEMS, SIGNALS AND SPECIFICATIONS . 16

2.1 Systems and Signals . 16

2.2 Hybrid Systems. 17

2.3 Metric Temporal Logic . 18

2.4 Parametric Metric Temporal Logic . 20

2.5 Automated Test Case Generation . 21

2.6 Running Examples . 23

2.6.1 Automotive Transmission (AT) . 23

2.6.2 High-Fidelity Automotive Engine (HAE) 24

2.6.3 Hybrid Nonlinear System (HS) . 27

3 ELICITATION OF FORMAL SPECIFICATIONS . 29

3.1 Introduction . 29

v

CHAPTER Page

3.2 Visual Specification Tool . 31

3.3 Graphical Formalism . 39

3.4 Debugging Specifications . 41

3.5 Usability Study . 42

3.5.1 Hypotheses . 42

3.5.2 Demographics . 44

3.5.3 Experimental Design . 45

3.5.4 Metrics . 47

3.6 Results . 47

3.7 Preliminary Results on Hypothesis 2a . 54

3.8 Applications . 54

3.8.1 Robotic Surgery . 54

3.8.2 Quadcopter . 56

3.9 Related works . 57

3.10 Conclusion and Future Work . 57

4 PARAMETER MINING OF PARAMETRIC MTL SPECIFICATIONS . 62

4.1 Introduction . 62

4.2 Problem Formulation . 64

4.3 Robustness of Metric Temporal Logic Formulas 66

4.4 Monotonicity of Parametric Metric Temporal Logic Formulas 70

4.4.1 Single parameter PMTL formulas . 71

4.4.2 Multiple parameter PMTL formulas . 73

4.5 Temporal Logic Parameter Bound Computation. 75

4.5.1 Non-increasing Robustness Functions . 79

vi

CHAPTER Page

4.5.2 Non-decreasing Robustness Functions . 82

4.6 Parameter Falsification Domain . 84

4.6.1 RGDA Algorithm . 84

4.6.2 SDA Algorithm . 86

4.7 Experiments and a Case Study . 89

4.8 Related Work . 93

4.8.1 Parameter Mining Over Finite State Machines 93

4.8.2 Parameter Mining Over Timed Automata. 97

4.8.3 Parameter Mining Over Hybrid Systems 99

4.8.4 Comparison to the Parameter Synthesis Method 100

4.9 Conclusion . 102

4.10 Future Work . 102

5 PRACTICAL ALGORITHMS FOR CONFORMANCE TESTING 103

5.1 Introduction . 103

5.2 Problem Formulation . 104

5.3 Code Coverage for CPS . 107

5.4 Controller Coverage with Different Plants . 110

5.5 Coverage with Different Controllers . 111

5.6 Covering Arrays for Code Coverage of CPS . 112

5.7 Case Study: Toyota Engine Controller . 113

5.7.1 Simulated Annealing . 114

5.7.2 Grid Search . 116

5.7.3 Controller Branch Coverage . 116

5.8 Related Works . 117

vii

CHAPTER Page

5.9 Conclusions and Future Work. 118

BIBLIOGRAPHY. 119

APPENDIX

A PROOFS . 131

A.1 Lemma 4.4.1 . 132

A.2 Lemma 4.4.2 . 132

A.3 Theorem 4.4.1 . 132

A.4 Proposition 4.5.1 . 133

A.5 Proposition 4.5.2 . 133

A.6 Proposition 4.5.3 . 133

A.7 Proposition 4.5.4 . 134

viii

LIST OF TABLES

Table Page

1.1 Simulation-Based Tools for Testing and Verification of CPS 5

1.2 Theorem Provers for Verification of CPS . 5

1.3 Reachability Tools for Verification of CPS . 6

2.1 Various Specifications for the AT and HAE Models [80] 25

3.1 Classes of Specifications Expressible with the Graphical Formalism 32

3.2 Hypotheses and Test Results with Level of Significance α = 0.05 44

3.3 Hypothesis 1b Subject Demographics . 45

3.4 Task List with Automotive System Specifications Presented in NL 46

3.5 Hypothesis Testing of Txnull with α = 0.05 . 52

3.6 ViSpec Improvements . 53

4.1 Experimental Results of Parameter Mining with S-TaLiRo 94

4.2 Experimental Comparison of the Parameter Mining Method (A) Pre-

sented in this Thesis and the Parameter Synthesis Method (B) Pre-

sented in [91] . 95

ix

LIST OF FIGURES

Figure Page

1.1 Testing and Verification Tools in Terms of Completeness and Scalability 4

1.2 Typical V Process in MBD . 8

2.1 Hybrid Nonlinear System Running Example . 18

2.2 The S-TaLiRo Automatic Test Case Generation Framework 21

2.3 Signal Generation with State Control Points and Equidistant Timing

Control Points with Various Interpolation Functions 22

2.4 Signal Generation with State Control Points and Piecewise Constant

Interpolation With Equidistant and Variable Timing Control Points . . . 23

2.5 Automotive Transmission Model Running Example 24

2.6 Left: An Input and Output Signal for the Automotive Transmission

(AT) Running Example that Falsifies a Natural Language Specifica-

tion. Right: Simulated Trajectories of the Hybrid System (HS) Run-

ning Example Including a Falsifying Trajectory . 26

2.7 Simuqest Enginuity High-Fidelity Engine Model Components 28

3.1 Overview of the GUI of the ViSpec Tool . 33

3.2 A Graphical Representation for the Safety MTL Specification φ1 35

3.3 A Graphical Representation for the Reachability MTL Specification φ2 . 36

3.4 A Graphical Representation for the MTL Specification φ3 36

3.5 A Graphical Representation for the MTL Specification φ4 37

3.6 A Graphical Representation for the MTL Specification φ5 38

3.7 A Graphical Representation for the MTL Specification φ6 39

3.8 A Graphical Representation for the MTL Specification φ7 40

3.9 The Specification Development Process using ViSpec 40

3.10 Tree Structure for a MTL Specification . 41

x

Figure Page

3.11 The Debugging Process in ViSpec . 43

3.12 Three Debugging Steps with ViSpec . 43

3.13 Subject Accuracy Grades Over Tasks for the Expert and Non-Expert

Cohorts . 48

3.14 The Empirical Probability that the Mean Grade per User/Task is

Greater than Threshold x for the Non-Expert and Expert subjects 49

3.15 Q-Q Plot for the Non-expert Data against the Normal Distribution 50

3.16 Q-Q Plot for the Expert Data against the Normal Distribution 50

3.17 Task Completion Time for Non-expert and Expert Cohorts 53

3.18 The Graphical Formalism for φs1 . 59

3.19 The Graphical Formalism for φs3. 59

3.20 The Graphical Formalism for φs2. 60

3.21 The Graphical Formalism for φq1. 61

3.22 The Graphical Formalism for φq2. 61

4.1 Overview of the Solution to the PMTL Parameter Mining Problem 65

4.2 Robustness Estimate Landscape for AT and HS System Specifications . 70

4.3 Robustness Estimate Landscape over a Parametrized Specification 72

4.4 Robustness Estimate Landscape with Varying Spatial and Temporal

Paramaeters for the Specification. 76

4.5 Robustness Estimate Over the Throttle and Parametrized Specification 78

4.6 Illustration of the Arrangement of Parameters for Non-Increasing and

Non-Decreasing Robustness Functions for Parametrized Specification . . 80

4.7 Specification Falsification for Mined Parameters Over the HS System . . 81

4.8 Specification Robustness as a Function of Parameter θ and Input u 83

xi

Figure Page

4.9 Illustration of the Iterative Process for Algorithm 2. 86

4.10 Illustration of the Iterative Process for Algorithm 3. 88

4.11 The Shift Scheduler of the Powertrain Challenge Problem with a Fal-

sifying System Behavior . 91

4.12 A Shift Schedule which Falsifies the Specification φS1 93

5.1 Overview of the Solution to the Conformance Falsification Problem 107

5.2 Typical Closed-Loop Cyber-Physical System. 108

5.3 Model Instrumentation of the Hybrid Nonlinear System (HS) 109

5.4 Conformance Testing Scenarios in the V Process in MBD 110

5.5 Experimental Results for Various Conformance Testing Methods 115

xii

PREFACE

This dissertation is the result of my six years work at Arizona State University.

It is a collection of three closely related topics that support testing and verification

of Cyber-Physical Systems.

Chapter 1 provides a general introduction to testing and verification methods for

Cyber-Physical Systems. It also presents an overview of the three topics presented in

this dissertation, along with an explicit list of papers published for each subject.

Chapter 2 presents the mathematical notation and preliminaries utilized in the

rest of the thesis. It also introduces the case studies that will be used throughout.

Chapter 3 presents a graphical formalism and tool for the elicitation of formal

specifications. A usability study is conducted to evaluate the performance of the

tool.

Chapter 4 presents the topic of parameter mining framework for parametric tem-

poral logic specifications. There the single-parameter mining framework is extended

to multiple parameters and posed as an optimization problem.

Chapter 5 presents practical algorithms for measure conformance between a CPS

model and implementation. Also, novel algorithms are presented for the exploration

and coverage of the system input search space. Finally, a testing framework for finding

non-conformant behaviors is presented.

Reading guide: The reader should read Chapter 1 and 2 before reading the

other chapters. The other chapters are not dependent on each other.

Bardh Hoxha

Tempe, Summer 2017

xiii

Chapter 1

INTRODUCTION

1.1 Testing and Verification of CPS

In recent years, a number of accidents [109, 87, 107] and recalls [127, 33] have

shown that there is a need for better testing, verification, and validation of Cyber-

Physical Systems (CPS). Prime examples of such systems are aircraft, cars and med-

ical devices. In literature, CPS are also referred to as Hybrid Systems [12]. In this

thesis, we use both terms interchangeably. These systems are characterized by both

continuous and discrete dynamics, with numerous subsystems interacting with each

other in complex ways. This complexity makes both the design and verification prob-

lem a very challenging one. In addition, trends indicate that software complexity in

CPS is going to increase in the future [118, 63, 33].

Ideally, a system developer constructs the model with a precise mathematical

formulation. A suitable mathematical approach to modeling CPS is through hybrid

automata [13, 76]. In brief, hybrid automata are extensions of finite state machines

with the ability to model both discrete and continuous behavior. The discrete behav-

ior is modeled by the finite state machine while the continuous behavior is modeled

through algebraic and differential equations over a finite set of continuous variables.

Several tools from the academic community such as Shift [50] and Ptolemy [64]

enable modeling of such systems. Also, there are several commercial tools such as

Simulink/Stateflow, LabView, and Modelica that are widely used by the industry.

Verification methods [45, 78] have been very successful in finding bugs in software

systems. In [96], the authors have formally verified a commercial grade, general-

1

purpose operating system kernel. In [23], the authors utilize formal methods for

verification of railway transportation systems. In [30], the authors present favor-

able experimental evaluation of software verification methods on the Martian Rover

software.

Similar success stories would be desirable for testing and verification of CPS. To-

wards this goal, there has been a substantial level of research in this direction (see

[142, 92] for an overview). The methodologies range from simulation-based verifi-

cation to exhaustive verification methods. The former have been shown to be more

scalable and applicable to real world designs, however, in general, they are less formal

and exhaustive than the latter.

One approach, within simulating based methods, works by repeatedly testing the

system until a system behavior that does not satisfy the specification is observed [2].

The resulting behavior is then presented to the system developer as a counterexample

that falsifies the specification. The problem of finding such a counterexample is

referred to as the falsification problem. In [2], the system is tested against formal

requirements which are defined in Metric Temporal Logic (MTL) [102]. The authors

utilize the concept of robustness of MTL specifications [68] to turn the falsification

problem into an optimization problem. The notion of the robustness metric enables

system developers to measure how far a system behavior is from failing to satisfy

a requirement. By utilizing such an approach, the search for falsifying behavior is

guided toward less robust system behavior.

Another simulation based approach to the falsification problem is presented in

[151]. There, the authors present an iterative approach for refining the abstract state

graph of hybrid systems and finding counterexamples that fails the specification. The

method uses partial disconnected system simulations to find a counterxample over

2

the discrete abstraction. After, optimization methods are used to splice these system

simulations together to form a complete system trajectory that falls in the unsafe set.

Exhaustive based methods, on the other hand, include methods such as reachabil-

ity analysis and theorem proving. By reachability analysis, we refer to the process of

finding the reachable states of the system. To verify that a given safety specification

holds, one must enumerate all the reachable states and check that they satisfy the

specification. For CPS, this problem is undecidable, i.e., there is no general algorithm

that terminates and answers whether a CPS satisfies a formal specification. There-

fore, to alleviate the problem, several abstraction and over-approximation techniques

[20, 41, 46, 73, 71, 123, 27, 9, 70] have been developed to tackle the problem.

In theorem proving, verification problems are posed as mathematical problems

through theorems, lemmas, etc [6, 120, 89, 122]. By following a semi-automated

process, one can prove that the system satisfies the specification. Under user guidance,

the system applies inference procedures such as induction, rewriting and simplification

to finally generate a proof certificate.

The topic of testing embedded software and, in particular, embedded control

software is a well studied problem that involves many subtopics well beyond the

scope of this thesis. We refer the reader to specialized book chapters and textbooks

for further information [44, 100]. Similarly, a lot of research has been invested on

testing methods for Model Based Development (MBD) of embedded systems [142].

However, the temporal logic testing of embedded and hybrid systems has not received

much attention [139, 119, 114, 150].

The academic community has proposed a number of tools and methodologies that

enable testing and verification of models of systems to a varying degree of formality.

A number of them are listed in the following tables. Simulation-based tools are listed

in Table 1.1. Reachability analysis tools are listed in Table 1.2. Theorem provers

3

are listed in Table 1.3. In Fig. 1.1, we place each of these tools in a graph in terms

of scalability and complexity (similar to [93, Fig. S1], where the authors compare

verification techniques).

Less Formal/Exhaustive More Formal/Exhaustive

Le
ss

 S
ca

la
bl

e
M

or
e

Sc
al

ab
le

S-TALIRO

BREACH

PVS

KeyMaera

S3CAM

STRONG

C2E2
SpaceEx
HyST

FLOW*

dReach

Simulation-Based Reachability Theorem Prover

Figure 1.1: Testing and verification tools in terms of completeness and scalability.

1.1.1 V & V Terminology

We note that the terms verification, validation and testing are widely used in

various research fields such as modeling, software engineering, formal methods, and

control. Unfortunately, there is no consensus on a singular interpretation of these

terms. To avoid confusion resulting from terminology differences, we will define the

meaning of these terms in this thesis as follows.

- Verification: The process of proving that the system satisfies its requirements.

Verification deals with the question of whether we are building the system correctly.

Typically, it is desirable that this process is automated.

- Validation: The process of determining whether the model (and/or requirements) is

4

Table 1.1: Simulation-based tools for testing and verification of CPS.

S-TaLiRo Ref.: [19, 82]

A Matlab toolbox for falsification, parameter mining and runtime monitoring of

MTL/STL specifications. It also enables conformance testing of CPS. It can ana-

lyze arbitrary Simulink models or user-defined functions that model the system.

Breach Ref.: [58]

Similar to S-TaLiRo, Breach is a Matlab toolbox for falsification, parameter mining

and runtime monitoring of STL specifications. It can analyze arbitrary Simulink

models.

S3CAM Ref.: [152, 151]

The tool combines segmented trajectories to find simulations that falsify a safety

property. It requires full observability and explicit representation of the states.

Table 1.2: Theorem provers for verification of CPS.

KeYmaera [121]: An automated and interactive theorem prover aimed specifically

at hybrid system verification. It also supports differential dynamic logic for hybrid

programs.

PVS [6]: A verification tool which is intgrated with an automated and interactive

theorem prover. PVS is compatible with powerful decision procedures and a symbolic

model checker.

an accurate representation of the real word in terms of its intended use. Validation

deals with the question of whether we are building the correct system. This is

typically a manual process.

5

Table 1.3: Reachability tools for verification of CPS.

SpaceEx [70]: Enables reachability analysis over hybrid systems with piecwise affine,

non-deterministic dynamics. The tool utilizes support functions and template poly-

hedra to represent the convex continuous sets. To find the reachable sets, the tool

uses variable time-step flowpipe computation.

Strong [48]: A Matlab toolbox for bounded-time reachability of hybrid systems with

linear dynamics. The tool simulates a number of trajectories and computes regions

around their initial states, from which, any trajectory generated would follow the

same sequence of locations and does not enter the unsafe set.

Flow* [37]: Enables bounded-time reachability analysis for non-linear hybrid au-

tomata. It uses Taylor model flowpipes to generate an over-approximation of the

reachable states.

HyST [25]: The tool enables the translation of the hybrid system description from

the input format utilized in SpaceEx to other verification tools which have the same

hybrid system semantics. Furthermore, the tool conducts various system transforma-

tions such as order reduction and hybridization to facilitate the rachability analysis.

dReach [98]: A bounded reachability analysis tool for a wide range of non-linear

hybrid systems. The tool encodes the rechability problem as δ-decision procedures

for the SMT solver dReal [72].

C2E2 [62]: Enables the bounded-time reachability analysis of hybrid systems mod-

eled as continuous or hybrid Simulink/Stateflow models. The tool uses a user-defined

discrepancy function to compute over-approximations of the reach sets.

6

- Testing : The process of generating test cases (scenarios) and determining whether

the test cases satisfy system requirements.

Different from verification, testing does not generaly prove that the system sat-

isfies its requirements. However, testing may be used to prove that a system does

not satisfy its requirements. Once a test case that does not satisfy the requirements

is found, that implies that the system as a whole does not satisfy the requirements.

For a more elaborate discussion on the definitions, history and utilization of these

terms, see [115, 116, 88].

1.1.2 Model-Based Design

A recent shift in system development, aimed to alleviate some of the testing and

verification challenges, is the Model Based Design (MBD) paradigm. One of the ben-

efits of MBD is that a significant amount of testing and verification of the system can

be conducted at various stages of model development. In contrast with the traditional

approach, where most of the testing and verification is conducted on the prototype

of the system. The research goals presented in this dissertation aim to support a

typical V process for MBD (see Fig. 1.2). In this process, the development begins

with the formalization of informal requirements. Then, models and implementations

are iteratively developed and tested with the goal that the final product conforms to

the predetermined set of formal specifications.

1.2 Research Topics

In this dissertation, we cover three topics that support the MBD process. In the

rest of this chapter, an overview of these topics is presented along with a summary

of contributions and publications.

7

Autocode

Generation

Informal

Requirements

Formal

Specifications

Processor in the

Loop (PIL)

Calibration and

Deployment

1

3Model Design

2

Hardware in the

Loop (HIL)

3

Figure 1.2: Typical V Process in MBD. (1) Elicitation of formal requirements; (2)

Testing and verification of formal specification in model design; (3) Verifying con-

formance of the implementation to the model; (4) Verifying that the end product

satisfies the functional requirements.

1.2.1 Specification Elicitation

The elicitation of formal specifications (cycle 1 in Fig. 1.2) is a challenging prob-

lem in itself. In general, requirements are expressed in natural language. The inherent

ambiguity of natural language may lead to misunderstandings between development

teams. These misunderstandings may result in increased costs and delays in develop-

ment. Additionally, if the misunderstandings are not detected, then a product that

does not meet the intended specifications may be developed. Ideally, specifications

should be defined in a mathematical language, using formal logics. The use of for-

mal logics not only removes ambiguity but also allows system developers to utilize

the vast set of the methods discussed in Section 5.1 to conduct system testing and

verification. It has been shown, that utilizing formal specifications can lead to im-

proved testing and verification for software systems [104, 77]. It is possible to get

8

similar benefits in applying semi-formal methods for CPS as preliminary results in

[66] show. Despite the benefits, one may conjecture that the primary reason for doing

so is because the development of specifications through a formal logic requires a level

of mathematical training that many users may not have [143]. Furthermore, even for

expert users, writing formal specifications is an error prone task [79, 54]. As a result,

the industry has been less willing to utilize formal specifications in their processes.

The question that arises is: is it possible to develop an accessible graphical formalism

that would enable users to accurately elicit formal specifications for CPS with little

to no mathematical training in formal languages?

1.2.2 Multiple Parameter Specification Mining

To support cycles 2 and 4 in Fig. 1.2, it is often necessary to explore and determine

system properties. The practitioner, with partial understanding of system specifica-

tions, would like to investigate the possible ranges for which the system specification

is satisfied/falsified. For example, for an automotive system, a system specification

could be as follows: “Always, the engine speed should be less than λ1 and vehicle

speed should be less than λ2”. An additional example could be as follows: “It is not

the case that, eventually, within t1 seconds, the vehicle speed is greater than 100 and

always, engine speed is less than λ1”.

A suitable mathematical formalism for representing these specifications is Para-

metric Metric Temporal Logic (PMTL) [21]. PMTL allows for the formalization of

specifications which are defined over both state and time, where either state or time

may be parametrized as in the aforementioned natural language specifications. Once

a PMTL specification, with unknown state and timing parameters is defined, it is

necessary to find the range of parameter values such that the system is not satisfied.

The problem is challenging due to several factors. The systems under considera-

9

tion are complex CPS. In general, determining whether a CPS satisfies a specification

with certain parameter values is undecidable. Therefore, a possible approach to ex-

ploring the parameter space is through system simulations. However, generating sys-

tem simulations can be computationally expensive. Thus, a solution to this problem

should use efficient methods for exploring system behaviors. A question that arises

is, what guarantees can we provide on parameter ranges that satisfy/falsify specifi-

cations? Also, how do we visualize and illustrate the relationship between state and

timing parameters in MTL specifications?

1.2.3 Practical Algorithms for Conformance

Throughout the MBD development process, it is often desirable to develop several

models and implementations of varying fidelity (see cycle 3 in Fig. 1.2). Models of

different fidelity levels can enable mathematical analysis of the model, control synthe-

sis, faster simulation, etc. To ensure that the intended system behavior is preserved

in the model refinement process, it is necessary to define a rigorous notion of con-

formance between different models and between models and their implementations.

In our framework, we consider that the specifications are defined in MTL. Therefore,

this conformance metric must encapsulate both state and timing behaviors of the

model and implementation. How do we explore model and implementation behaviors

to establish this notion of conformance? Would it be possible to guarantee that the

implementation satisfies the specifications that were considered to hold on the model?

Could we establish a conformance relation for cases where the practitioner does not

have full state knowledge on the system and does not have complete control over

system initial conditions? An example of this would be testing a system model and a

hardware-in-the-loop implementation. Usually, for the former, you have full control

over inputs and initial conditions which might not be the case for the latter.

10

1.3 Summary of Contributions

In the following, I summarize the contributions and publications related to the

aforementioned topics.

Chapter 3 - Specification Elicitation:

• B. Hoxha, H. Bach, H. Abbas, A. Dokhanchi, Y. Kobayashi and G. Fainekos,

Towards Formal Specification Visualization for Testing and Monitor-

ing of Cyber-Physical Systems, in Proc. of Int. Workshop on Design and

Implementation of Formal Tools and Systems, 2014 [82].

In this work, I proposed a graphical formalism for the elicitation of formal specifi-

cations specifically geared towards CPS. The formalism enables the visualization of

a wide array of MTL specifications. It is designed for use with systems and signals

and enables both event and time-based specifications.

• B. Hoxha, N. Mavridis and G. Fainekos, VISPEC : A graphical tool for

elicitation of MTL requirements, in Proc. of the 2015 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2015 [26].

In this paper, I expanded and improved upon the graphical formalism presented

in [82]. I developed a tool based on the graphical formalism. To evaluate the

usefulness of the tool, I conducted a usability study. Through the usability study,

it was shown that the tool could be utilized by both expert and non-expert users

to define formal specifications accurately. The tool can be downloaded at https:

//sites.google.com/a/asu.edu/s-taliro/vispec.

• A. Dokhanchi, B. Hoxha, and G. Fainekos, Metric Interval Temporal Logic

Specification Elicitation and Debugging, in Proc. of the ACM-IEEE In-

11

https://sites.google.com/a/asu.edu/s-taliro/vispec
https://sites.google.com/a/asu.edu/s-taliro/vispec

ternational Conference on Formal Methods and Models for System Design, 2015

[54].

In this work, the elicitation framework was extended by adding a debugging algo-

rithm that enables the detection of various issues in specifications. The debugging

algorithm detects validity, redundancy and vacuity issues in formal specifications.

The ability to automatically debug improves the specification elicitation process

and, ultimately, the testing and verification process. In this work, I developed

the specification elicitation formalism and tool. I conducted an online study to

evaluate the ability of Formal Methods experts to write accurate specifications in

MTL. Additionally, the experimental results were based on the usability study I

conducted in [26].

Chapter 4 - Parameter Mining:

• H. Yang, B. Hoxha and G. Fainekos, Querying parametric temporal logic

properties on embedded systems, in Testing Software and Systems, 2012 [147].

In this work, the notion of system robustness is utilized to explore and determine

system properties. In more detail, given a parameterized MTL specification [21],

where there is a single unknown state or timing parameter, we find the range of

values for the parameter such that the system is not satisfied. In this work, I con-

tributed by implementing the parameter estimation algorithms in the S-TaLiRo

toolbox.

• B. Hoxha and G. Fainekos, Pareto Front Exploration for Parametric

Temporal Logic Specifications of Cyber-Physical Systems, in the Work-

shop on Monitoring and Testing of Cyber-Physical Systems, 2016 [84].

• B. Hoxha, A. Dokhanchi and G. Fainekos, Mining parametric temporal

12

logic properties in model-based design for cyber-physical systems, in

the International Journal on Software Tools for Technology Transfer, 2017 [83].

In this paper, the parameter mining problem presented in [147] is extended and

generalized to specifications with multiple parameters. In this work, I extended

the theory of parameter mining for multiple parameters and improved on the ef-

ficiency of the stochastic optimization algorithms. Furthermore, I developed two

algorithms that enable the exploration of the Pareto front generated by the robust-

ness landscape of the problem. Finally, I conducted experiments using the method

on an industrial-size case study of a high-fidelity engine model and performed an

extensive analysis of the related works in the subject area.

Chapter 5 - Conformance Testing:

• H. Abbas, B. Hoxha, G. Fainekos, J. Deshmukh, J. Kapinski and K. Ueda, Con-

formance Testing as Falsification for Cyber-Physical Systems, in arXiv

Systems and Control, 2014 [3, 4].

In this paper, a notion of conformance between models in different stages of de-

velopment and their implementation is presented. In addition, a framework for

testing non-conformance using automated methods is introduced. In this work, I

researched various metrics to establish the conformance relation between systems.

I conducted experimental tests with academic and industrial level models.

Other contributions and publications:

I have been one of the main contributors to a widely used, highly cited, testing

and verification toolbox S-TaLiRo [126, 82]. S-TaLiRo has been applied to numer-

ous challenging applications from the automotive and medical device industries. In

[82], I wrote an updated overview of the toolbox and its features. The toolbox was

13

nominated as a technological breakthrough by the industry [131, 132]. The completed

works presented in this proposal have been incorporated in S-TaLiRo.

Other contributions include:

• B. Hoxha, H. Abbas, and G. Fainekos, Benchmarks for Temporal Logic Re-

quirements for Automotive Systems, in the Workshop on Applied Verification

for Continuous and Hybrid Systems, 2014 [80].

• B. Hoxha, H. Abbas and G. Fainekos, Using S-TaLiRo on industrial size

automotive models, in the Workshop on Applied Verification for Continuous

and Hybrid Systems, 2014 [81].

In the first paper, two Matlab/Simulink models of automotive systems are pro-

posed as benchmark problems for hybrid system verification. Both models can be

simulated quickly, making them ideal for testing-based verification methods that

require a significant number of system output trajectories. The paper also defines

a number of MTL specifications that must be satisfied by the models. In this work,

I presented the benchmarks and the specifications.

In the second paper, I demonstrated various testing and simulation-based methods

using S-TaLiRo on an industrial size, high-fidelity engine model.

• H. Abbas, B. Hoxha, G. Fainekos and K. Ueda, Robustness-guided temporal

logic testing and verification for stochastic cyber-physical systems, in

the Proc. of the 2014 IEEE 4th Annual International Conference on Cyber Tech-

nology in Automation, Control, and Intelligent Systems (CYBER), 2014 [5].

In this work, a testing and verification framework for stochastic CPS is presented.

The goal of the testing framework is to detect system operating conditions that

cause the system to exhibit the worst expected specification robustness with finite-

time guarantees. The resulting expected robustness minimization problem is solved

14

using Markov chain Monte Carlo algorithms. This allows the development of finite-

time guarantees, which quantify the quality of the solution after a finite number

of simulations. In this work, I developed the Expected Robustness Guided Monte

Carlo (ERGMC) algorithm and presented a design and verification development

process for stochastic CPS. Finally, I conducted a case study on the performance

of the framework using a high-fidelity engine model. The paper was a finalist for

the best student paper award.

• A. Dokhanchi, B. Hoxha and G.Fainekos, On-Line Monitoring for Tempo-

ral Logic Robustness, in Proc. of Runtime Verification, volume 8734 of LNCS,

Springer, 2014 [53].

In this work, a dynamic programming algorithm for online monitoring of MTL

specifications was presented. In this work, I conducted a case study to establish

an acceptable overhead of the monitoring algorithm for certain classes of practical

specifications.

• A. Dokhanchi, B. Hoxha, C.E. Tuncali and G.Fainekos, An Efficient Algo-

rithm for Monitoring Practical TPTL Specifications, in Proc. of Runtime

Verification, volume 8734 of LNCS, Springer, 2014 [56].

Here, a dynamic programming algorithm for the monitoring of a fragment of Timed

Propositional Temporal Logic (TPTL) specifications is presented. For this frag-

ment, an efficient, polynomial-time algorithm for off-line monitoring of finite traces

is presented.

15

Chapter 2

SYSTEMS, SIGNALS AND SPECIFICATIONS

2.1 Systems and Signals

In this section, we review the notations and definitions from [83, 2]. We treat CPS

as an input-output map. Specifically, we consider a system Σ as a mapping from a

compact set of initial operating conditions X0 and input signals U ⊆ UN to output

signals Y N and timing (or sampling) functions T ⊆ RN
+ . Here, U is a compact set

of possible input values at each point in time (input space), Y is the set of output

values (output space), R is the set of real numbers and R+ the set of positive reals.

We fix N ⊆ N, where N is the set of natural numbers, to be a finite set of indexes for

the finite representation of a system behavior.

We impose three assumptions/restrictions on the systems that we consider:

Assumption 2.1.1 The input signals (if any) must be parameterizable using a finite

number of parameters. That is, there exists a function U such that for any u ∈ U,

there exist two parameter vectors ~λ = [λ1 . . . λm]ᵀ ∈ Λ, where Λ is a compact set,

and ~t = [t1 . . . tm]ᵀ ∈ Rm
+ such that m is typically much smaller than the maximum

number of indices in N and for all i ∈ N , u(i) = U(~λ,~t)(i).

Assumption 2.1.2 The output space Y must be equipped with a generalized metric

d which contains a subspace Z equipped with a metric d [2].

Assumption 2.1.3 For a specific initial condition x0 and input signal u, there must

exist a unique output signal y defined over the time domain R. That is, the system

Σ is deterministic.

16

Further details on the necessity and implications of the aforementioned assumptions

can be found in [2]. Assumption 2.1.3 can also be relaxed as shown in [5].

Under Assumption 2.1.3, a system Σ can be viewed as a function ∆Σ : X0×U→

Y N × T which takes as an input an initial condition x0 ∈ X0 and an input signal

u ∈ U and it produces as output a signal y : N → Y (also referred to as trajectory)

and a timing function τ : N → R+. The only restriction on the timing function τ is

that it must be a monotonic function, i.e., τ(i) < τ(j) for i < j. The pair µ = (y, τ)

is usually referred to as a timed state sequence, which is a widely accepted model for

reasoning about real-time systems [11].

A timed state sequence can represent a computer-simulated trajectory of a CPS

or the sampling process that takes place when we digitally monitor physical systems.

We remark that a timed state sequence can represent both the internal state of the

software/hardware (usually through an abstraction) and the state of the physical

system. The set of all timed state sequences of a system Σ will be denoted by L(Σ).

That is,

L(Σ) = {(y, τ) | ∃x0 ∈ X0 .∃u ∈ U . (y, τ) = ∆Σ(x0, u)}.

2.2 Hybrid Systems

Hybrid systems can be modeled using hybrid automata [13]. In Fig. 2.1, we

have an example of a hybrid nonlinear automaton. The system has two locations (or

modes) S1 and S2. Depending on what location the system is in, the system evolves

under different dynamics. The initial conditions of the system dictate whether the

system is initialized at S1 or S2. In this example, only one transition from S1 to S2

is possible.

Generaly, hybrid automata may have a finite number of locations. The algebraic

and differential equations in the locations dictate the continous evolution of the sys-

17

tem. Furthermore, the state variables may reset to a specific value once a transition

from one location to the next occurs. For a formal definition of hybrid automata, we

refer the reader to [76, 13].

S0

ẋ1 = x1(t)− x2(t) + 0.1t

ẋ2 = −x1(t) sin(2πx1(t))+

x2 cos(2πx2(t)) + 0.1t

S1

ẋ1 = x1(t)

ẋ2 = −x1(t) + x2(t)

x0 ∈ [−1, 1]2\XU

x ∈ XU x0 ∈ XU

Figure 2.1: Hybrid nonlinear system with XU = [0.85, 0.95]2 and initial condition

x0 ∈ [−1, 1]× [−1, 1].

2.3 Metric Temporal Logic

Our high-level goal is to analyze, explore and infer properties that the system Σ

satisfies. We do so by observing the system response (output signals) to particular in-

put signals and initial conditions. In particular, we assume that the system developer

can formalize the system properties in Metric Temporal Logic (MTL) [102].

MTL enables the formalization of complex requirements with respect to both

state and time. In addition to propositional logic operators such as conjunction (∧),

disjunction (∨) and negation (¬), MTL supports temporal operators such as next

(X), until (U), release (R), always (2) and eventually (3). Among others, MTL can

be utilized to express specifications such as:

• Safety (2φ) : φ should always hold from this moment on.

• Liveness (3φ): φ should hold at some point in the future (or now).

18

• Coverage (3φ1 ∧ 3φ2 ... ∧ 3φn): φ1 through φn should hold at some point in

the future (or now), not necessarily in order or at the same time.

• Stabilization (32φ): At some point in the future (or now), φ should always

hold.

• Recurrence (23φ) : At every point time, φ should hold at some point in the

future (or now).

Definition 2.3.1 (Syntax of MTL) Let R be the set of truth degree constants, AP

be the set of atomic propositions and I be a non-empty non-singular interval of R≥0.

The set MTL of all well-formed formulas (wff) is inductively defined using the fol-

lowing rules:

• Terms: True (>), false (⊥), all constants r ∈ R and atomic propositions p, ¬p

for p ∈ AP are terms.

• Formulas: if φ1 and φ2 are terms or formulas, then φ1 ∨ φ2, φ1 ∧ φ2, φ1 UIφ2

and φ1RIφ2 are formulas.

The atomic propositions in our case label subsets of the output space Y . In other

words, each atomic proposition is a shorthand for an arithmetic expression of the

form p ≡ g(y) ≤ c, where g : Y → R and c ∈ R. We define an observation map

O : AP → 2Y such that for each p ∈ AP the corresponding set is O(p) = {y | g(y) ≤

c} ⊆ Y .

In the above definition, UI is the timed until operator and RI the timed release

operator. The subscript I imposes timing constraints on the temporal operators. The

interval I can be open, half-open or closed, bounded or unbounded, but it must be

non-empty (I 6= ∅) (and, practically speaking, non-singular (I 6= {t})). In the case

19

where I = [0,+∞), we remove the subscript I from the temporal operators, i.e., we

just write U and R. Also, we can define the eventually (3Iφ ≡ >UIφ) and always

(2Iφ ≡ ⊥RIφ) temporal operators. Furthermore, for discrete signals, the next (X)

(Xφ = >U[1,1]φ) operator may be utilized. Note that here the subscript [1,1] denotes

the next sample. The formal robust semantics of MTL formulas are presented in

Section 4.3.

Another popular formalism for the definition of formal requirements is Signal

Temporal Logic (STL) [110]. Since MTL formulas are interpreted over behaviors of

the CPS, the results provided in this thesis can be directly applied over STL formulas

as well.

2.4 Parametric Metric Temporal Logic

In many cases, it is important to be able to describe an MTL specification with

unknown parameters and then, mine the falsifying parameters values. In [21], Asarin

et al. introduced Parametric Signal Temporal Logic (PSTL) and presented two al-

gorithms for computing approximations for parameters over a given signal. Here, we

review and extend some of the results in [21] while adapting them in the notation

and formalism that we use in this thesis.

Definition 2.4.1 (Syntax of Parametric MTL) Let ~θ = [θ1 . . . θn] be a vector of

parameters. The set of all well-formed Parametric MTL (PMTL) formulas is the set

of all well-formed MTL formulas where for all i, θi either appears in an arithmetic

expression, i.e., p[θi] ≡ g(y) ≤ θi, or in the timing constraint of a temporal operator,

i.e., I[θi].

We will denote a PMTL formula φ with parameters ~θ by φ[~θ]. Given a vector of

parameters ~θ ∈ Θ, then the formula φ[~θ] is an MTL formula. There is an implicit

mapping from the vector of parameters ~θ to the corresponding arithmetic expressions

20

System Σ
Temporal Logic

Robustness

Stochastic
Optimization

output signal y

robustness ε

initial
conditions x0 &
input signal u

initial conditions ,x0
input signal u,

min robustness ε

Figure 2.2: The S-TaLiRo automatic test case generation framework.

and temporal operators in the MTL formula. Once a parameter valuation is defined,

a PMTL formula is transformed into a MTL formula and the robust semantics as

defined in Section 4.3 apply.

2.5 Automated Test Case Generation

The work presented in Chapters 4 and 5 builds over the S-TaLiRo [19, 82] au-

tomatic test case generation framework (see Fig. 2.2). There, given a model and

an MTL specification, the sampler produces a point x0 from the set of initial con-

ditions and an input signal u. The initial conditions and input signal are passed to

the system simulator which returns an execution trace (output trajectory and timing

function). The trace is then analyzed by the robustness analyzer which returns a

robustness value. The robustness value computed is used by the stochastic sampler

to decide on the next initial conditions and inputs. The process terminates once a

falsifying trajecty is found or a maximum number of tests is reached. The algorithm

will return the least robust system behavior with the corresponding input signal and

initial conditions.

The input signals in this framework are parameterized using m number of control

21

0 5 10 15 20

0

20

40

0 5 10 15 20

0

20

40

(a) (b)

0 5 10 15 20

0

20

40

0 5 10 15 20

0

20

40

(c) (d)

Figure 2.3: Signal generation with state control points ~λ = [20, 40, 10, 40, 10] and

equidistant timing control points ~t = [0, 5, 10, 15, 20] with various interpolation func-

tions. (a) Linear, (b) Piecewise constant, (c) Spline, (d) Piecewise cubic interpolation.

points. The control points state vector ~λ and the timing vector ~t, in conjunction with

an interpolation function U, define the input signal u. Namely, for time i, u(i) =

U(~λ,~t)(i). The practitioner may choose different interpolation functions depending

on the system and application. Example functions, as shown in Fig. 2.3, include

linear, piecewise constant, splines, piecewise cubic interpolation etc. If timing control

points are not included, the state control points will be distributed equidistantly

with respect to time with a chosen interpolation function. Otherwise, the timing of

the state control points is defined by the timing control points. The timing option

is illustrated in Fig. 2.4. Choosing the appropriate number of control points and

interpolation functions is application dependent. Timing should be included in the

search space whenever the system should be tested under conditions where the input

variation could be high in a very short period of time. By including timing between

control points in the search space, one may be able to produce behaviors such as

jerking behavior for the gas and brake throttle of an automotive vehicle. Note that

22

0 5 10 15 20

0

20

40

0 5 10 15 20

0

20

40

(a) (b)

Figure 2.4: Signal generation with state control points ~λ = [20, 40, 10, 40, 10] and

piecewise constant interpolation. (a) With no timing control points, (b) With timing

control points ~t = [0, 2, 10, 18, 20].

in this framework, for systems with multiple inputs, each input can have a different

number of control points and interpolation function. This enables the practitioner to

define a wide array of input signals.

2.6 Running Examples

2.6.1 Automotive Transmission (AT)

We consider a slightly modified version of the Automatic Transmission model

provided by Mathworks as a Simulink demo 1 (Fig. 2.5). The only input u to

the system is the throttle schedule, while the brake schedule is set simply to 0 for

the duration of the simulation which is T = 30 sec. The physical system has two

continuous-time state variables x which are also its outputs y: the speed of the

engine ω (RPM) and the speed of the vehicle v, i.e., the output space is Y = R2 with

y(i) = [ω(i) v(i)]T for all i ∈ [0, 30]. Initially, the vehicle is at rest at time 0, i.e.,

X0 = {[0 0]T} and x0 = y(0) = [0 0]T . Therefore, the output trajectories depend only

on the input signal u which models the throttle, i.e., (y, τ) = ∆Σ(u). The throttle

at each point in time can take any value between 0 (fully closed) to 100 (fully open).

1Available at: http://www.mathworks.com/help/simulink/examples/
modeling-an-automatic-transmission-controller.html

23

http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html
http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html

Figure 2.5: Automotive Transmission Model.

Namely, u(i) ∈ U = [0, 100] for each i ∈ N . The model also contains a Stateflow

chart with two concurrently executing Finite State Machines (FSM) with 4 and 3

states, respectively. The FSM models the logic that controls the switching between

the gears in the transmission system. We remark that the system is deterministic,

i.e., under the same input signal u, we will observe the same output signal y. In

[2], the authors demonstrated how to falsify requirements like: “The vehicle speed

v is always under 120km/h or the engine speed ω is always below 4500 RPM”. In

MTL, the requirement is formalized as φ = 2((v ≤ 120) ∧ (ω ≤ 4500)). A falsifying

system trajectory appears in Fig. 2.6 (Left). More specifications over this model are

presented in Table 2.1. For a more detailed presentation of this model see [80].

2.6.2 High-Fidelity Automotive Engine (HAE)

We utilize an industrial size high-fidelity engine model. The model is part of

the SimuQuest Enginuity [135] Matlab/Simulink tool package. The Enginuity tool

package includes a library of modules for engine component blocks. It also includes

pre-assembled models for standard engine configurations, see Fig. 2.7. In this work,

24

Table 2.1: Various specifications for the AT and HAE models [80].

Natural Language MTL

ψ1

There should be no transition from gear two

to gear one and back to gear two in less than

2.5 sec.

2((g2 ∧Xg1)→ 2(0,2.5]¬g2)

ψ2

After shifting into gear one, there should be

no shift from gear one to any other gear

within 2.5 sec.

2((¬g1 ∧Xg1)→ 2(0,2.5]g1)

ψ3

When shifting into any gear, there should

be no shift from that gear to any other gear

within 2.5sec.

∧4
i=12((¬gi ∧Xgi) → 2(0,2.5]gi)

ψ4

If engine speed is always less than ω̄, then

vehicle speed can not exceed v̄ in less than T

sec.

¬(3[0,T](v > v̄)∧2(ω < ω̄)) or

2(ω < ω̄)→ 3[0,T](v > v̄)

ψ5

Within T sec the vehicle speed is above v̄ and

from that point on the engine speed is always

less than ω̄.

3[0,T]((v ≥ v̄) ∧2(ω < ω̄))

ψ6

A gear increase from first to fourth in under

10secs, ending in an RPM above ω̄ within

2 seconds of that, should result in a vehicle

speed above v̄.

((g1 U g2 U g3 U g4) ∧

3[0,10](g4 ∧ 3[0,2](ω ≥

ω̄))) → 3[0,10](g4 ∧

X(g4 U[0,1] (v ≥ v̄)))

ω: Engine rotation speed, v: vehicle velocity, gi : gear i.

Recommended values: ω̄ : 4500, 5000, 5200, 5500 RPM; v̄ : 120, 160, 170, 200 mph;

T : 4, 8, 10, 20 sec

2: Always, �: Eventually, U : Until, X: Next

25

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

5000
RPM

0 5 10 15 20 25 30
0

100

200
Speed

(a) Example 2.6.1 (AT)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

x1
x 2

(b) Example 2.6.3 (HS)

Figure 2.6: Left (a): Example 2.6.1 (AT): Throttle: A piecewise constant input

signal u parameterized with Λ = [0, 100]6 and ~t = [0, 5, 10, 15, 20, 25]. RPM, Speed:

The corresponding output signals that falsify the specification “The vehicle speed v is

always under 120mph or the engine speed ω is always below 4500 RPM.” Right (b):

Example 2.6.3 (HS): Simulated trajectories of the hybrid system containing a trajec-

tory that falsifies the specification “A trajectory should never pass set [−1.6,−1.4]2

or set [3.4, 3.6]× [−1.6,−1.4]”. The green square indicates the set of possible initial

conditions and the red squares indicate the bad regions which the system should not

enter. The yellow region indicates the set of initial conditions where the mode or

location on the hybrid system changes.

26

we will use the Port Fuel Injected (PFI) spark ignition, 4 cylinder inline engine con-

figuration. It models the effects of combustion from first physics principles on a

cylinder-by-cylinder basis, while also including regression models for particularly com-

plex physical phenomena. Simulink reports that this is a 56 state model. The model

includes a tire-model, brake system model and a drive train model (including final

drive, torque converter and transmission). The model is based on a zero-dimensional

modeling approach so that the model components can all be expressed in terms of

ordinary differential equations. The inputs to the system are the throttle and brake

schedules, and the road grade, which represents the incline of the road. The outputs

are the vehicle and engine speed, the current gear and a timer that indicates the time

spent on a gear. Several specifications over this model are presented in Table 2.1. An

interesting query about the system is the following. Does a transition exist from gear

two to gear one and back to gear two in less than τ seconds? This is formalized with

the following PMTL specification:

φ = 2((gear2 ∧Xgear1)→ 2(0,τ]¬gear2)

2.6.3 Hybrid Nonlinear System (HS)

As the third running example, we consider the hybrid time-varying nonlinear

system presented in Fig. 2.1 as a hybrid automaton [10]. The output of the system

is the state of the system, i.e. y(t) = x(t). Interesting requirements on this system

would be “A trajectory of the system should never pass through the sets [−1.6,−1.4]2

or [3.4, 3.6]×[−1.6,−1.4]”. A falsifying system trajectory appears in Fig. 2.6 (Right).

27

Figure 2.7: SimuQuest Enginuity high-fidelity engine model components. Used with

permission, c©SimuQuest [135].

28

Chapter 3

ELICITATION OF FORMAL SPECIFICATIONS

3.1 Introduction

As robots become commercially available, their correct operation is of paramount

importance. Especially for safety critical systems, safety must be guaranteed. For

example, consider the verification works for autonomous vehicles [146] and medical

robots [111, 101]. An integral component or this process is the elicitation of formal

requirements.

Safety requirements are usually expressed in natural language, which is inherently

ambiguous, in general. When it is used for defining system specifications, this ambi-

guity may lead to misunderstandings between development teams that may result in

increased costs and delays in development. If the misunderstandings are not detected

early, then a product that does not meet the intended specifications will be developed.

Ideally, specifications should be defined in a mathematical language, using formal

logics. This not only removes ambiguity, but also allows system developers to utilize

a vast set of methods [92] that have been developed by the academic community

for testing and verification of systems. The academic community has also developed

automatic tools such as S-TaLiRo [19, 82], Fapas [148], SpaceEx [70], CheckMate

[134], Flow [37], Breach [58], C2E2 [61], KeYmaera [121] and Strong [48] that

enable developers to conduct system testing and verification.

Even though it has been shown, that utilizing formal specifications can lead to

improved testing and verification [66], the industry still utilizes natural language as

the preferred approach in defining specifications. One may conjecture that the most

29

important reason for doing so is because the development of specifications through

a formal logic requires a level of mathematical training that many users may not

have [143]. Furthermore, even for expert users, writing formal specifications is an

error prone task [79]. As a result, the industry has been less willing to utilize formal

specifications in their processes.

In this chapter, we present a graphical formalism that enables non-expert users

to develop formal specifications for control systems. The formalism enables the visu-

alization of a large fragment of MTL. The main challenge in the development of the

formalism lies in finding the right balance between expressive power and ease-of-use.

It is designed for use with systems and signals and enables both event and time based

specifications. This is the first time that a visual formal language representation is

developed for specifications for Cyber-Physical Systems (CPS). Here by CPS we de-

fine any system that has discontinuous nonlinear dynamics and complex safety critical

requirements (see Section 2.2). Prime examples are medical robotics and autonomous

vehicles. A specification visualization tool has been developed based on the graphical

formalism presented in this work. To evaluate the usefulness of the tool in terms of

usability and ease-of-use, we have conducted a usability study.

In this chapter:

• A graphical formalism that enables the development of formal specifications is

presented.

• A visual specification tool based on the graphical formalism is introduced.

• A usability study is conducted to evaluate the tool.

• Applications of the tool to real-world robots are presented.

30

3.2 Visual Specification Tool

The Visual Specification Tool (ViSpec) 1 enables the development of formal

specifications for CPS. Users can develop requirements in a graphical formalism which

is then translated to Metric Temporal Logic (MTL) [102] (see Section 2.3).

The topic of capturing requirements through graphical formalisms has been stud-

ied in the past [137, 8, 103, 22, 149]. However, to the best of the author’s knowledge,

the work presented here is the first attempt to do so specifically aimed for the de-

velopment of specifications for CPS. The initial idea for the graphical formalism was

first presented in [82] while the tool was still in the early stages of development. In

[26], an updated version of the tool is presented along with a usability study. The

improvements over the previous version include: a more streamlined interface; an up-

dated representation of signals in the interface; and an updated template definition

process.

For CPS specifications, it is often needed to account for both timing and event

sequence occurrences. Both of these are necessary for reasoning over systems and

signals. Consider the specification 2[0,5]((speed > 100) → 2[0,5](rpm > 4000)). It

states that whenever within the first 5 seconds, the vehicle speed goes over 100, then

from that moment on, the engine speed (rpm), for the next 5 seconds, should always be

over 4000. Here both the sequence and timing of the events are of critical importance.

To ensure that the tool can be utilized by non-expert users, the following goals for

the tool are defined: 1) The user interface is intuitive to use, i.e, it does no have a high

learning curve; 2) The visual representation of the requirements is visually distinct

and unambiguous; 3) There is a one-to-one mapping from the visual representation of

the requirement and the corresponding requirement in MTL. The set of specifications

1Available at https://sites.google.com/a/asu.edu/s-taliro/vispec

31

https://sites.google.com/a/asu.edu/s-taliro/vispec

that can be generated from this graphical formalism is a proper subset of the set of

MTL specifications.

Table 3.1: Classes of specifications expressible with the graphical formalism.

Specification Class Explanation

Safety Specifications of the form 2φ used to define specifications where φ should

always be true.

Reachability Specifications of the form 3φ used to define specifications where φ should

become true at least once in the future (from now).

Stabilization Specifications of the form 32φ used to define specifications that, at least

once, φ should be true and from that point on, stay true.

Recurrence Specifications of the form 23φ used to define specifications that, it is always

the case, that at some point in the future, φ is true.

Implication Specifications of the form φ→ ψ requires the ψ should hold when φ is true.

Reactive

Request-Response

Specifications of the form N(φ → Mψ), where N and M are temporal

operators, used to define an implication response between two specifications

where the timing of M is relative to timing of N .

Conjunction Specifications of the form φ ∧ ψ used to define the conjunction of two sub-

specifications

Non-strict Sequencing Specifications of the form N(φ ∧Mψ), where N and M are temporal op-

erators, used to define a conjunction between two specifications where the

timing of M is relative to timing of N .

Throughout the development process of the formalism, it was noticed that the

more expressive the formalism, the more challenging to use it became. Therefore, we

focused on several widely used classes of specifications which are described in Table

3.1. Examples of the classes of specifications are presented in the rest of this section.

To make the tool easier to use, we placed several constraints on the types of

32

signals used. Specifically, the signals and requirements are one-dimensional. This

enables clear and structured visualization on a two-dimensional user interface.

In Fig. 3.1, the user interface of the tool is presented along with its most critical

components. The user interface is composed of a menu, horizontal timeline, rect-

angular blocks called templates, and a zoom scroll. While the passage of time is

represented horizontally, the sequence of events is presented vertically. The formulas

are generated from templates as well as the connections between them. To enable a

compositional representation of the templates we use the same template for reactive

requirements as in the always case.

Figure 3.1: Overview of the graphical user interface of the ViSpec tool. The example

shown represents the MTL specification φ = 2[0,40]((speed < 80) → 2[0,40](rpm <

4000)).

The main building blocks of the formalism are templates. These are used for

defining temporal logic operators, their timing intervals, and the expected signal

shape. The user starts with an empty template and a setup assistant presents the

user with a sequence of dialog boxes that aid in the development of the template.

33

The process is context dependent where each option selection leads to a potentially

different set of options for the next step.

The first step in the template definition process is to define the temporal operator.

Among the choices (and their corresponding MTL symbols) are: Always (2), At Least

Once (3), Eventually Always (32), Repeatedly Often and Finally (23), and now.

The options available enable users to define a wide range of specifications. The

following sections will present examples of a subset of formulas that can be generated

using this graphical formalism.

After the temporal operator is selected, the user sets the timing bounds for it.

Many users might have difficulty defining timing bounds, especially for specifications

with temporal operators such as Eventually Always (32) and Repeatedly Often and

Finally (23). To illustrate the process, the tool provides a fill-in-the-blanks sentence

format to the user. For example, if the operator Eventually Always is selected, the

user will have to complete the following sentence with the timing bounds: “Eventually,

between and seconds, the signal will become true, and from that point on, will

stay true in the next to seconds”. The set of timing intervals are visualized

with color shaded regions in the template.

The next step in the process is in defining whether the predicate will evaluate to

true when the signal is above or below a set threshold. For example, for the Always

(2) operator, a signal is selected that is either always above or below a specified

threshold. Once either option is selected, various signals that fit the requirement are

automatically generated and presented visually. Instead of drawing the signal, the

user will select from one of the generated options. Consider the following example:

Example 3.2.1 A specification from the fragment of MTL formulas called Safety

MTL specifications is presented. Specifically, the specification φ1 = 2[0,36](rpm <

4000). The formula states that in the next 36 seconds, engine speed should always be

34

less than 4000. The corresponding graphical formalism for this formula is presented

in Fig. 3.2. Note that, in regard to the specification, the signal can be of any shape

as long as it is always below the 4000 threshold.

Figure 3.2: Example 3.2.1: A graphical representation for the Safety MTL specifica-

tion φ1 = 2[0,36](rpm < 4000).

Consider the following example for the At Least Once (3) temporal operator:

Example 3.2.2 A specification from the fragment of MTL formulas called Reachabil-

ity MTL specifications is presented. Specifically, the specification φ2 = 3[0,39](speed >

100). The formula states that eventually, within the next 39 seconds, the vehicle speed

will go over 100. The corresponding graphical formalism for this formula is presented

in Fig. 3.3. Again, in regard to the specification, the signal can be of any shape as

long as at one point, within the timing bounds of the temporal operator, it is above

the 100 threshold.

For the Eventually Always (32) operator, at least once in the timing interval of

the eventually operator, the signal should go above the threshold and stay there for

the entire timing interval of the always operator. Two types of shading will indicate

the timing bounds of the MTL operators.

35

Figure 3.3: Example 3.2.2: The graphical formalism for the Reachability MTL speci-

fication φ2 = 3[0,39](speed > 100).

Example 3.2.3 Consider the specification φ3 = 3[0,30]2[0,10](speed > 100). The

formula states that at some point in the first 30 seconds, the vehicle speed will go over

100 and stay above for 10 seconds. The corresponding graphical formalism for this

formula is presented in Fig. 3.4.

Figure 3.4: Example 3.2.3: The graphical formalism for the MTL specification φ3 =

3[0,30]2[0,10](speed > 100).

For the Repeatedly Often and Finally (23) operator, an oscillating signal is pre-

sented where two types of shading indicate the timing intervals for each MTL operator.

Consider the following example:

Example 3.2.4 The specification φ4 = 2[0,30]3[0,10](speed > 100) is presented. The

formula states that at every timestep of the simulation in the first 30 seconds, the speed

36

will go over 100 within the next 10 seconds. The corresponding graphical formalism

for this formula is presented in Fig. 3.5. No matter how far to the left or right

the green shaded region is moved, contained within the orange region, there is always

a point where the signal is above the threshold. Recall that the displayed signal is

automatically generated so that it satisfies the options previously selected.

Figure 3.5: Example 3.2.4: A graphical representation for the MTL specification

φ4 = 2[0,30]3[0,10](speed > 100).

The next important concept in this graphical formalism is the relationship between

templates.

First, the sequence relationship between two templates is presented. Assume that

the first template is already created. If another template is added below it, then an

order in the execution of the events is defined. The second template is only considered

if the first template is evaluated to true. Formally, there is an implication relationship

from the first template to the second. Consider the following example:

Example 3.2.5 The specification φ5 = (3[0,40](speed > 100)) → (3[0,30](rpm >

3000)) is presented. The formula states that if, within 40 seconds, the vehicle speed is

above 100 then within 30 seconds from time 0, the engine speed should be over 3000.

The corresponding graphical formalism for this formula is presented in Fig. 3.6.

37

Figure 3.6: Example 3.2.5: A graphical representation for the MTL specification

φ5 = (3[0,40](speed > 100))→ (3[0,30](rpm > 3000)).

A second type of relationship enables the user to establish conjunction between

two events. To achieve this, templates can be grouped. This is indicated by a bold

black box. Doing so requires that both templates evaluate to true. Consider the

following example:

Example 3.2.6 Specification φ6 = (2[0,40](speed < 100)) ∧ (2[0,40](rpm < 4000)).

The formula states that, within 40 seconds, the vehicle speed should be less than 100

and the engine speed should be under 4000. The corresponding graphical formalism

for this formula is presented in Fig. 3.7.

The third type of template relationship enables the user to establish relative timing

between two templates. Consider the following example:

Example 3.2.7 Specification φ7 = 2[0,40]((speed < 80) → 2[0,40](rpm < 4000)).

Here, the nested specification 2[0,40](rpm < 4000) is evaluated every time (speed < 80)

is true. This formula is represented in the formalism with nested templates, otherwise

38

Figure 3.7: Example 3.2.6: A graphical representation for the MTL specification

φ6 = (2[0,40](speed < 100)) ∧ (2[0,40](rpm < 4000)).

referred to as parent and child templates. The second template is tabbed and connected

to the first template using a green indicator. In the GUI, such a nested template is

initiated by clicking on the signal of the parent template. The corresponding graphical

formalism is presented in Fig. 3.8.

The variety of templates and the connections between them allow users to express

a wide variety of specifications.

3.3 Graphical Formalism

The specification development process in ViSpec is divided in two sub processes.

First, given a user input in the ViSpec tool, it is translated to a tree structure where

the nodes contain template information such as temporal operators, their correspond-

ing timing parameters, group and the value threshold for the predicates. Secondly,

the generated tree structure is traversed by a recursive algorithm to generate the MTL

39

Figure 3.8: Example 3.2.7: A graphical representation for the MTL specification

φ7 = 2[0,40]((speed < 80)→ 2[0,40](rpm < 4000)).

ViSpec

Tool

Graphical

Formalism

User

Input

Tree

Structure MTL

Figure 3.9: The specification development process using ViSpec

formula. There is a bijection between the visual representation of a specification and

the MTL formula. An overview of the process is provided in Fig. 3.9.

An example of the tree structure for MTL formula φ = 2(a∧3b)→ (2c∧3(d→

(a ∧ 2b))) is shown in Fig. 3.10. The recursive algorithm for traversing the tree

structure and generating the MTL formula is presented in Alg. 1. Note that the

function addParenConn{A,B,C,D} add the parenthesis and connectives between

predicates.

40

Root

N1, 1,2, a

N12, 1,3, b

N3,2,ε,ε

N31, 2,2, c N32, 2,3, d

N321, 3, ε, a N322, 3,2, b

Figure 3.10: The corresponding tree structure for specification φ = 2(a ∧ 3b) →

(2c ∧ 3(d → (a ∧ 2b))) where a, b, c and d are predicates. Each node is composed

of a node name, group number, temporal operator, and predicate. The symbol ε

indicates empty parameters.

3.4 Debugging Specifications

Through the guided process of developing templates, we avoid various syntactic

issues with the generated MTL specifications. However, we cannot guarantee that

the generated specification correctly captures the intention of the system engineer.

To gain confidence on the generated specification, in [54], we present a debugging

framework that operates over the ViSpec tool. The debugging framework is shown

in Fig. 3.11. Once the user develops a specification in ViSpec, it is converted to an

MITL specification and passed on to the debugger. The debugger checks for three

types of errors:

- Validity: whether the specification is unsatisfiable or a tautology.

- Redundancy: whether the formula has redundant conjuncts.

- Vacuity: whether any of the sub formulas do not affect the satisfiability of the

specification.

41

Algorithm 1 WriteMTL - Algorithm for generating the MTL formula given a tree
structure of the graphical formalism

Input: Tree Structure T = 〈V,E〉 where v ∈ V and v = 〈G,Op, S〉 where G is the
group, Op is the temporal operator and S is the predicate string; formula φ.

Output: φ
1: function writeMTL(T, φ)
2: C ← T.getChildren().
3: sC ← size(C)
4: for node i in C do
5: φ ← conc(φ, i.Op)
6: if i.isParent then
7: if not(i.S.isEmpty) then
8: subC ← t.getChildren(i)
9: φ ← addParenConnA(φ, subC)

10: φ ← writeMTL(i.subtree, φ)
11: φ ← addParenConnB(φ, subC)
12: else
13: φ ← conc(φ, ’(’)
14: φ ← writeMTL(i.subtree, φ)
15: φ ← addParenConnC(sC, φ)
16: end if
17: else
18: φ ← conc(φ, i.S)
19: φ ← addParenConnD(φ, sC)
20: end if
21: end for
22: end function

As shown in Fig. 3.12, if an issue is detected, the formula is returned to the user

for revision. Another tool that enables the validation of the elicited requirements is

STLInspector [125]. The tool computes a set of representative signals which can be

compared to several mutated variants. The practitioner, through visual inspection,

can gain confidence on the correctness of the specification.

3.5 Usability Study

3.5.1 Hypotheses

The aim of the study is to evaluate whether ViSpec enables users to develop

formal specifications. Two groups were considered:

42

Figure 3.11: The debugging process in ViSpec.

Figure 3.12: Three debugging steps with ViSpec.

1. Non-expert users: These are users who declared that they have no experience

in working with requirements.

2. Expert users: These are users who declared that they have experience working

with system requirements. Note that they do not necessarily have experience

in writing requirements using formal logics.

Some of the interesting questions we wanted to investigate, which are also pre-

sented as hypotheses in Table 3.2, are:

• Whether the graphical formalism enables non-experts and experts to formalize

requirements accurately.

• How well the expert cohort performs in comparison to the non-expert cohort.

• How user friendly and easy-to-use ViSpec is.

43

Table 3.2: Hypotheses and test results with level of significance α = 0.05. User groups

are defined in Section 3.5.2.

Alternative Hypothesis Reject Null Hypothesis

1a Non-expert users are able to define formal requirements accurately using

formal logics such as MTL.

†

1b Non-expert users are able to define formal requirements accurately using

the Visual Specification Tool.

Yes

2a Expert users from the industry are able to define formal requirements

accurately using formal logics such as MTL.

?

2b Expert users from the industry are able to define formal requirements

accurately using the Visual Specification Tool.

Yes

3alt The mean grade per user for expert users is greater the mean grade per

user for non-expert users.

Yes

TxaltThe mean grade per task x for industry users is greater than to the mean

grade per task x for non-expert users.

Partially

†: We assume that we can reject Hypothesis 1a based on our informal experience.

?: Preliminary results on Hypothesis 2a presented in Section 3.7.

Writing formal requirements is a challenging task that requires a significant amount

of training. Therefore, it is safe to assume that we can reject Hypothesis 1a as sup-

ported by our informal experience. Hypothesis 2a will be tested in a future work.

In addition, we analyze user interaction and behavior to measure the ease-of-use of

the tool. Note that in Table 3.2, for each hypothesis, we show whether the null

hypothesis is rejected.

3.5.2 Demographics

The non-expert cohort was comprised of twenty subjects from the student com-

munity of Arizona State University. Most of the subjects are from an engineering

44

background with little to no experience working with requirements. The student

demographics are presented in Table 3.3.

The expert subject cohort was comprised of ten subjects from the industry in the

Phoenix area. The subjects have experience working with specifications and come

from an engineering background.

Table 3.3: Hypothesis 1b Subject Demographics

Freshman 2 Computer Science 5 Male 12

Sophomore 2 Software Engineering 3 Female 8

Junior 5 Electrical Engineering 3

Senior 5 Mechanical Engineering 6

Masters 4 Engineering, other 3

PhD 2

3.5.3 Experimental Design

Each subject received a task list to complete. The task list contained ten tasks

related to automotive system specifications. Each task asked the subject to formalize

a natural language specification through ViSpec and generate an MTL formula. The

list of tasks is presented in Table 3.4.

The tasks become more complex throughout the session. The higher the number

of the task, the more steps necessary to complete the task successfully.

Each session was at most 45 minutes long. Subjects received a one minute and

thirty second tutorial on using ViSpec to develop specifications. The computer screen

was recorded and actions were logged for each session. The subjects also completed

a demographic and post-completion questionnaire.

45

Table 3.4: Task list with automotive system specifications presented in natural lan-

guage.

Task Natural Language Specification

1. Safety In the first 40 seconds, vehicle speed should always be less than 160.

2. Reachability In the first 30 seconds, vehicle speed should go over 120.

3. Stabilization At some point in time in the first 30 seconds, vehicle speed will go over

100 and stay above for 20 seconds.

4. Recurrence At every point in time in the first 40 seconds, vehicle speed will go over

100 in the next 10 seconds.

5. Recurrence It is not the case that, for up to 40 seconds, the vehicle speed will go

over 100 in every 10 second period.

6. Implication If, within 40 seconds, vehicle speed is above 100 then within 30 seconds

from time 0, engine speed should be over 3000.

7. Request Response If, at some point in time in the first 40 seconds, vehicle speed goes over

80 then from that point on, for the next 30 seconds, engine speed should

be over 4000.

8. Conjunction In the first 40 seconds, vehicle speed should be less than 100 and engine

speed should be under 4000.

9. Non-strict se-

quencing

At some point in time in the first 40 seconds, vehicle speed should go

over 80 and then from that point on, for the next 30 seconds, engine

speed should be over 4000.

10. Long sequence If, at some point in time in the first 40 seconds, vehicle speed goes over 80

then from that point on, if within the next 20 seconds the engine speed

goes over 4000, then, for the next 30 seconds, the vehicle speed should

be over 100.

46

3.5.4 Metrics

Two metrics are used for performance evaluation:

Task completion: this is a binary measure, which indicates whether users were

able to finish the task within the set time.

Measure of Accuracy : a value from one to five which is used to quantify the accu-

racy of subject generated formulas. The formulas are graded by formal specification

experts which were given the following two suggested criteria: a) How accurate the

meaning of the natural language specification is captured, and b) Whether the inac-

curacies in the user submitted formula can be easily debugged and corrected in the

testing and verification process. Furthermore, in order to decrease subjectivity, the

following instructions were given to the expert graders in order to anchor the mean-

ings of the five different grades of the scale used: A grade of one indicates that the

generated formula is totally inaccurate. A grade of two indicates that the formula

is mostly inaccurate. A grade of three indicates an inaccurate formula which can

be easily debugged and corrected to the proper formal logic specification by formal

specification experts and, thus, this is the minimum acceptable satisfactory result.

A grade of four indicates that the formula is inaccurate but can be debugged and

improved by automated specification debugging tools. A grade of five indicates that

the generated formula is completely accurate. The group of expert graders consisted

of experts in formal methods and logic.

3.6 Results

Average grade per task

For both cohorts, the task performance is presented in Fig. 3.13. It can be observed

that overall, the mean grade per task for both cohorts is high. Consider the mean

47

grade per task as a random variable X̄. Specifically, X̄ : Ω → R, where Ω ∈ {y :

1 ≤ y ≤ 5}. In Figure 3.14, we present the survival function SX̄(x) = 1 − FX̄(x) =

1 − P (X̄ ≤ x) = P (X̄ > x) based on sample data. Note that x is the threshold of

mean grade accuracy.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

1

2

3

4

5

6
Bar plot of mean grade and std. dev. over tasks for non−expert users

G
ra

d
e

1
2
3
4
5
6

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Task

Box plot of grades over tasks for non−expert users

G
ra

d
e

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

1

2

3

4

5

6
Bar plot of mean grade and std. dev. over tasks for expert users

1
2
3
4
5
6

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Task

Box plot of grades over tasks for expert users

Figure 3.13: Subject accuracy grades over tasks for both the expert and non-expert

cohorts.

Hypothesis Testing

In the following analysis, we will utilize t-tests [133, Chapter 6] to conduct hypothesis

testing. The t-test is appropriate in our case since we will compare the population

means of only two groups. In order to utilize such a method, we need to ensure

that the population from which the sample is drawn is normally distributed. To test

for normality of the underlying distribution of the data, we utilize the Kolmogorov-

Smirnov test, the Chi-square g.o.f test, and the Anderson-Darling test. For more

information on these tests, the reader is referred to [97, Chapter 16].

48

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

non−expert

expert

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

x threshold

E
m

p
ir
ic

a
l
p

ro
b

a
b

ili
ty

non−expert

expert

Per User

Per Task

Figure 3.14: Top: The empirical probability that the mean grade per user is greater

than threshold x for the non-expert and expert subjects, i.e., P (Ȳ > x).

Bottom: The empirical probability that the mean grade per task is greater than

threshold x for the non-expert and expert subjects, i.e., P (X̄ > x).

Hypothesis 1b

To test Hypothesis 1b, we need to establish what is an acceptable threshold for ac-

curacy in order to test the hypothesis. As discussed in the metrics section, we claim

that a mean grade higher than three is an acceptable threshold for non-expert users.

Therefore, the null hypothesis for hypothesis 1b is: the mean grade per user is less

than or equal to three for non-experts.

Let us define the average grade per user as a random variable Ȳ . Specifically,

Ȳ : Ω → R, where Ω ∈ {y : 1 ≤ y ≤ 5}. The sample data from 20 subjects has

a mean grade of 4.43 and standard deviation of 0.41. We test for normality with

49

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
3.5

4

4.5

5

5.5

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

Figure 3.15: Q-Q plot for the non-expert sample data with respect to the normal

distribution.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
4

4.5

5

5.5

Standard Normal Quantiles

Q
u

a
n

ti
le

s
 o

f
In

p
u

t
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

Figure 3.16: Q-Q plot for the expert sample data with respect to the normal distri-

bution.

the Kolmogorov-Smirnov test, the Chi-square g.o.f test, and the Anderson-Darling

test and all three fail to reject the null hypothesis that the data follows the normal

distribution. Therefore, we cannot conclude that the data does not follow the normal

distribution. In Fig. 3.15, we present the Q-Q plot between the non-expert sample

data and the normal distribution. If we assume that the data constitute a random

sample from a normal distribution, i.e. Ȳ ∼ N , we can use the t-statistic to test the

hypothesis. We reject the null hypothesis with a p-value ≈ 0.

50

Hypothesis 2b

Similarly, we test Hypothesis 2b for the expert cohort. The null hypothesis for hy-

pothesis 2b is: the mean grade per user is less than or equal to three for expert users.

We test for normality as in the previous case and all three test fail to reject the null

hypothesis that the data follows the normal distribution.

Consider the average grade per user as a random variable Z̄. Specifically, Z̄ :

Ω → R, where Ω ∈ {y : 1 ≤ y ≤ 5}. The sample data from 10 subjects has a mean

grade of 4.76 and standard deviation of 0.26. In Fig. 3.16, we present the Q-Q plot

between the expert sample data and the normal distribution. If we assume that the

data constitute a random sample from a normal distribution, i.e. Z̄ ∼ N we can use

the t-statistic to test the hypothesis. We reject the null hypothesis with a p-value ≈

0.

Hypothesis 3alt

To test Hypothesis 3alt, we conduct a two sample t-test. The p-value returned from the

test is 0.0024 for a significance level of 0.01, we reject the null hypothesis. Therefore

we claim that the mean grade per user for expert users is greater than the mean grade

per user for non-experts.

Hypothesis Tx

Next, we compare the mean grade of both cohorts in regards to each task. A two

sample t-test is conducted for each task. The results for the tests are presented in

Table 3.5. Task 9 is the most difficult task when it comes to the number of errors

generated, and this is the only task where there is a clear difference in performance

between the expert and non-expert cohorts. For hypotheses Tx4, Tx6, Tx7, and Tx10

the p-values are between 0.05 and 0.10 and therefore need more investigation.

51

Table 3.5: Hypothesis testing of Txnull with α = 0.05.

x Reject Txnull p-value Conclusion

4 No 0.065 potentially true with more investigation

5 No 0.165 false

6 No 0.074 potentially true with more investigation

7 No 0.100 potentially true with more investigation

8 No 0.424 false

9 Yes 0.016 true

10 No 0.063 potentially true with more investigation

We observe that the only null hypothesis rejected is for task nine indicating that

the mean grade for expert users is greater than the mean grade for non-expert users.

The subject accuracy grades over tasks for is shown in Fig. 3.13.

Ease-of-use analysis

One indicator for the ease-of-use of the application is the total time spent per task.

As can be observed in Fig. 3.17, the mean time spent per task on average is at

most 167 seconds. For easier identification of points of difficulty, we divided each

task into subtasks. It was observed that there is no correlation between the length of

time spent in a subtask and correctness. This potentially indicates, as also verified

by correlation testing between times and grades, that the subjects were unaware of

mistakes in the process. From these and other observations, such as misclicks, and

subject feedback, we have developed a set of refinements on the tool to improve the

user experience. A partial list of improvements is presented in Table 3.6.

52

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
0

50

100

150

200

250
T

im
e
(s

e
c
.)

Task completion time for non−expert and expert cohorts

non−expert

expert

Figure 3.17: Task completion time for non-expert and expert cohorts.

Table 3.6: ViSpec improvements.

Improve... Prime Indicators

1. the process of creating child templates misclicks, user feedback

2. the tutorial by placing more emphasis on the

difference between implication and conjunc-

tion between templates

task accuracy grade

3. the visual representation of grouped templates task accuracy grade,

user feedback

53

3.7 Preliminary Results on Hypothesis 2a

As an ongoing process, to test Hypothesis 2a, we have been collecting online

data through a survey 2 from the members of the academic community who have

experience working with formal methods (self-characterization).

Twelve subjects participated in the survey. The subjects were asked to trans-

late the same natural language requirements listed in Table 3.4 to MTL. From the

responses submitted, five MTL specifications were incorrect. The incorrect speci-

fications include vacuity, validity and redundancy errors [55]. For example, for the

natural language specification “At some time in the first 30 seconds, the vehicle speed

(v) will go over 100 and stay above 100 for 20 seconds” an expert in formal methods

provided the MTL specification φ = 3[0,30]((v > 100) → 2[0,20](v > 100)) . The

specification is not correct. In fact, in [55], it is proven that it is a tautology. In other

words, it is evaluated to true irrespective of system behavior.

Preliminary results indicate that even subjects with MTL knowledge can produce

inaccurate specifications. However, more data is necessary to reach conclusive re-

sults on this hypothesis. Considering the fact that the formalism is utilized in the

development of safety-critical systems, it is concerning that several errors such as the

aforementioned one are submitted by knowledgeable users in the formal requirements

area.

3.8 Applications

3.8.1 Robotic Surgery

In the last few decades, there has been a significant increase in the number of

robotics systems, especially in the health care system. They have been successfully

2Survey may be accessed at: https://sites.google.com/a/asu.edu/s-taliro/mtl-online-survey

54

introduced in multiple areas such as rehabilitation, telesurgery, physical therapy, el-

derly care, and remote physician care. In the following, we will focus on autonomous

robotic systems for surgery where of paramount importance is the safety of these sys-

tems [101]. Specifically, we will consider a model of a robotic serial link manipulator

as presented in [111].

One of the main tasks in surgery is the puncturing action. The high precision

and repeatability of the process, make robot systems ideal for this task. Also, the

trauma induced around the region is much lower and therefore the recovery process

for the patient is quicker. To complete the puncturing action, the robot has to move

towards the puncturing location. Test the tissue for various indicators to calibrate

for optimal puncture, bring the puncturing needle to a perpendicular position and,

finally, puncture with correct force and angle. If the force or angle is miscalculated,

it might pose unintended harm to the patient. Consider the specifications from [111]

that should hold on a serial manipulator for puncturing:

1. From [111]: The force applied to the patient by the end effector is always less

than a given threshold, except for the puncturing subtask. Formally, assuming

that the operation time is 30 seconds, we have: φs1 = 2[0,30](¬puncturing →

f ≤ fmax).

2. From [111]: The task is feasible, and the position of the needle once it stops

is inside the target region R. Formally, assuming that the operation time is 40

seconds, we have: φs2 = 3[0,40](Stop ∧ needle ∈ R)).

3. Also, other requirements can be expressed for such a system. For example, the

end effector speed should not be less than vmin and should not be greater than

vmax. Formally: φs3 = 2[0,40](vmin < veff < vmax)

55

4. The ViSpec tool is utilized to develop the specifications for the robotic ma-

nipulator. For φs1, the specification is presented in Fig. 3.18. We assume that

fmax = 10. For φs2, the specification is presented in Fig. 3.20. We assume that

needle ∈ R ⇐⇒ 5 < nx < 10 ∧ 5 < ny < 10, where nx, ny are the x and y

coordinates for the needle. For φs3, the specification is presented in Fig. 3.19.

We assume that vmin = 10 and vmax = 20.

3.8.2 Quadcopter

In recent years, quadcopters and other unmanned aerial vehicles (UAVs) have

become a major focus for research both in the academic community and industry.

Among others, they are used in military operations, nuclear disaster assessment,

firefighting and entertainment. The challenges faced in developing these devices and

their control algorithms come from the flight dynamics and the highly dynamical

environment that they operate in. Also, as the complexity of these devices increases,

so do the performance and reliability requirements.

Consider the following specifications for a quadrotor:

1. The absolute value of the pitch and roll angle should always be bellow certain

thresholds. Formally, assuming that the operation time is 40 seconds, we have:

φq1 = 2[0,40](|α| < αmax) ∧2[0,40](|β| < βmax).

2. If distance to the target region is smaller than a certain threshold d, then for

then next 20 seconds, the speed should not exceed vmax. Formally, assuming

that the operation time is 40 seconds, we have: φq1 = 2[0,40](dist < d →

2[0,20](v < vmax)).

3. The ViSpec tool is utilized to develop the specifications for the quadrotor. For

φq1, the specification is presented in Fig. 3.21. We assume that αmax = 45 deg,

56

βmax = 45 deg and γmax = 60 deg. For φs3, the specification is presented in Fig.

3.19. We assume that vmin = 10 and vmax = 20. For φq2, the specification is

presented in Fig. 3.22. We assume that d = 5 and vmax = 10.

3.9 Related works

In order to help address the formal specification challenge, various graphical for-

malisms have been studied in the past [137, 8, 103, 22, 149, 138]. The most relevant

works appear in [22] and [149]. In [22], the authors extend Message Sequence Charts

and UML 2.0 Interaction Sequence Diagrams to propose a scenario based formalism

called Property Sequence Chart (PSC). The formalism is mainly developed for spec-

ifications on concurrent systems. In [149], PSC is extended to Timed PSC which

enables the addition of timing constructs to specifications.

In terms of usability studies for formal requirements very few works exist. In

[143], the authors study the ability of expert users to develop requirements in Z. A

related usability study for requirement representation is presented in [108], where the

authors present and evaluate a system for generating, troubleshooting and executing

controllers for robots using natural language.

3.10 Conclusion and Future Work

As robots and other cyber-physical systems become more complex and ubiquitous,

so does the need for better testing and verification. A set of formal methods that

improve this process require some formal representation of system specifications. In

this work, a graphical formalism and a tool that enables users to easily develop

formal specifications are presented. The ViSpec tool enables users who have little

to no mathematical training in formal logics to develop formal specifications, as was

verified by a usability study that was conducted in order to evaluate the usefulness

57

of the tool and to get insights on potential improvements. The tool was utilized to

formalize specifications for two robots.

Last but not least, we would like to investigate if the potential inaccuracies of

the specifications that users generate with the tool can be attributed mainly to the

inherent ambiguity of the natural language descriptions which were given, or if not,

which other factors contribute and to what extent. Thus, in an improved usability

study, we aim towards exploring alternative methods of generation of requirements

from engineers for a system, that do not involve the administration of a natural lan-

guage description by the experimenter. This would enable us to study to what extent

inherent natural language ambiguity causes the observed less-than-perfect accuracy

that is sometimes, even if rarely, exhibited.

58

Figure 3.18: The graphical formalism for φs1.

Figure 3.19: The graphical formalism for φs3.

59

Figure 3.20: The graphical formalism for φs2.

60

Figure 3.21: The graphical formalism for φq1.

Figure 3.22: The graphical formalism for φq2.

61

Chapter 4

PARAMETER MINING OF PARAMETRIC MTL SPECIFICATIONS

4.1 Introduction

In this chapter, we consider the problem of multiple parameter mining of parame-

terized MTL specifications. Our high-level goal is to explore and infer properties that

a system satisfies. We assume that the system designer has partial understanding

about the properties that the system satisfies (or does not satisfy) and would like to

be able to determine these properties precisely. In particular, we assume that the

system developer can formalize system properties in MTL, where some parameters

are unknown. Such parameters could be unknown threshold values for the continuous

state variables of the system or some unknown real-time constraints.

In this work, we present a framework for multiple parameter mining and analysis

of parametric MTL specifications. Such an exploration framework would be of great

value to the practitioner. The benefits are twofold. One, it allows for the analysis

and development of specifications. In many cases, system requirements are not well

formalized by the initial system design stages. Two, it allows for the analysis and

exploration of system behavior. If a specification can be falsified, then it is natural

to inquire for the range of parameter values that cause falsification. That is, in many

cases, the system design may not be modified, but the guarantees provided should be

updated.

As the number of parameters in the specification increases so does the complexity

of the resulting optimization problem. In the case of single parameter mining, the

solution of the problem is a one-dimensional range. With multiple parameters, finding

62

a solution to the problem becomes more challenging since the optimization problem

is converted to a multi-objective optimization problem where the goal is to determine

the Pareto front [112]. To solve this problem, we present a method for effective

one-sided exploration of the Pareto front and provide a visualization method for the

analysis of parameters. The algorithms presented in this work are incorporated in the

testing and verification toolbox S-TaLiRo [19, 126]. For an overview of the toolbox

see [82]. Finally, we demonstrate our framework on a challenge problem from the

industry on an industrial scale model and present experimental results on several

benchmark problems.

Even though our examples and case study are from the automotive domain, our

results can be applied to any application domain where Model Based Design (MBD)

and temporal logic requirements are utilized, e.g., medical devices [130, 129, 90, 36].

In this chapter:

• The parameter mining problem for multiple parameters is presented.

• The solution to the multiple parameter mining problem is presented as a multi-

criterion optimization problem.

• An efficient solution to the optimization problem is presented.

• Two algorithms for the exploration of the Pareto Front are presented.

• The methods presented in this work are demonstrated on an industrial size case

study of a high-fidelity engine model.

• An extensive review on related works is presented.

63

4.2 Problem Formulation

Consider the AT running example from Section 2.6. In the development process

for such systems, the practitioner might want to find answers to queries like “What is

the shortest time that ω can exceed 3250 RPM” or “For how long can ω be below 4500

RPM”. We can also answer queries about the relationships between parameters with

regard to system falsification. For example, for the specification “Always the vehicle

speed v and engine speed ω need to be less than parameters θ1, θ2, respectively”. Also,

we could ask “If I increase/decrease θ1 by a specific amount, how much do I have to

increase/decrease θ2 so that the system Σ satisfies the specification?”. Formally, the

multiple parameter mining problem is defined as follows.

Problem 4.2.1 (MTL m-Parameter Mining) Given an MTL formula φ[~θ] with

a vector of m unknown parameters ~θ ∈ Θ = [~θ,~θ] and a system Σ, find the set

Ψ = {~θ∗ ∈ Θ | Σ does not satisfy φ[~θ∗]}.

That is, the solution to Problem 4.2.1 is the set Ψ such that for any parameter ~θ∗

in Ψ the specification φ[~θ∗] does not hold on system Σ. In the rest of the document, we

refer to Ψ as the parameter falsification domain. An approximate solution for Problem

4.2.1 was presented in [147] for the case where θ is a scalar i.e. the formula has only

one parameter. In [147], the solution to the problem returned a parameter with

which the falsifying set can be inferred since the parameter range is one-dimensional.

An extension for the multiple parameter mining problem was presented in [83]. In

the multiple parameter setting, we have a set of possible solutions which we need to

explore. That is, the solution to the multi-parameter mining problem is in the form

of a Pareto front [112].

We note that the original observation that the falsification domain problem over a

single system output trace has the structure of a Pareto front is made in [21]. In this

64

System
Simulator

Temporal Logic
Robustness

Stochastic
Optimization

robustness ε

output signal y

initial
conditions x0 &
input signal u

Cost
Function

System Σ PMTL
Specification

PMTL
Monotonicity

output: parameter
falsification domain Ψ

inputs:

est.
parameters

Figure 4.1: Overview of the solution to Problem 4.2.1, the PMTL parameter mining

problem for CPS.

work, we observe that the falsification domain problem over all system output traces

also has the structure of a Pareto front. Other methods for Pareto front computation

have been studied in [106, 47]. However, the nature of the problem is significantly

different in our case. Here, due to the undecidability of the problem [12], we can only

guarantee that a parameter falsifies the specification. It is not the case that we can

guarantee that a parameter value satisfies the specification. Therefore, the parameter

falsification domain is generated strictly by utilizing a falsifying behavior.

Ideally, by solving Problem 4.2.1, we would also like to have the property that

for any ~ζ ∈ Θ − Ψ, φ[~ζ] holds on Σ, i.e., Σ |= φ[~ζ]. However, even for a given ~ζ,

the problem of algorithmically computing whether Σ |= φ[~ζ] is undecidable for the

classes of systems that we consider in this work [12]. We note that for some classes

of systems, such as monotone dynamical systems, this problem is tractable [95].

An overview of our proposed solution to Problem 4.2.1 appears in Fig. 4.1. Given

a model and a MTL specification with one or more parameters, the sampler produces

65

a point x0 from the set of initial conditions, input signal u and vector of proposed

(or mined) parameters ~θ for the Parametric MTL specification. The initial condi-

tions and input signal are passed to the system simulator which returns an execution

trace (output trajectory and timing function). The trace, in conjunction with the

proposed parameters, is then analyzed by the MTL robustness analyzer which re-

turns a robustness value. The robustness value computed is used by the stochastic

sampler to decide on next initial conditions, inputs, and estimated parameters to

utilize. The process terminates once a maximum number of tests is reached or when

no improvement on the proposed parameters has been made after a predefined num-

ber of iterations. As the number of parameters increases, so does the computational

complexity of the problem. For formulas with more than one parameter, we present

an efficient approach in Section 4.6 to explore the parameter falsification domain.

4.3 Robustness of Metric Temporal Logic Formulas

In this section, we introduce the notion of robustness of MTL formulas by re-

viewing and summarizing results and definitions from [83, 2]. MTL [102] enables

reasoning over quantitative temporal properties of Boolean signals. To facilitate the

proofs in the rest of this chapter, we present MTL in Negation Normal Form (NNF).

We denote the extended real number line by R = R ∪ {±∞}.

Definition 4.3.1 (Syntax of MTL in NNF) The set of all well-formed MTL for-

mulas (wff) is defined by φ ::=

> | ⊥ | p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 UIφ2 | φ1RIφ2

where > and ⊥ are symbols, AP is the set of atomic propositions and p ∈ AP . Here,

I is a non-empty, non-singular interval over R≥0.

66

In Boolean logic, the > and ⊥ symbols are interpreted as true and false, but in

multi-valued logics they are interpreted as the maximum and minimum of the possible

logical values (see Def. 4.3.3).

Before proceeding to the actual definition of the robust semantics, we introduce

some auxiliary notation. A metric space is a pair (X, d) such that the topology of

the set X is induced by a metric d. Using a metric d, we can define the distance of

a point x ∈ X from a set S ⊆ X. Intuitively, this distance is the shortest distance

from x to all the points in S. In a similar way, the depth of a point x in a set S is

defined to be the shortest distance of x from the boundary of S. Both the notions of

distance and depth play a fundamental role in the definition of the robustness degree.

The metrics and distances utilized in this work are covered in more detail in [68, 2].

Definition 4.3.2 (Signed Distance) Let x ∈ X be a point, S ⊆ X be a set and d

be a metric on X. Then, we define the Signed Distance from x to S to be

Distd(x, S) :=

 −min{d(x, y) | y ∈ S} if x 6∈ S

min{d(x, y) | y ∈ X\S} if x ∈ S

MTL formulas are interpreted over timed state sequences µ. In the past [67, 68],

multi-valued semantics for MTL were proposed where the valuation function on the

predicates takes values over the totally ordered set R according to a metric d operating

on the output space Y . In detail, we let the valuation function be the depth (or the

distance) of the current point of the signal y(i) in the set O(p) labeled by the atomic

proposition p. Intuitively, this distance represents how robust is the point y(i) within

set O(p). We recall from Def. 2.3.1, O maps the atomic proposition p to a set.

For example, for the specification 2p, where p ≡ (engine rpm ≤ 4500) we have

O(p) = (−∞, 4500]. This robustness concept is extended from points to trajectories

by applying min and max operations over time. While positive robutsness values

67

indicate satisfaction, negative values indicate that the trajectory falsifies the MTL

specification. This is referred to as the robustness estimate and is formally presented

in Definition 4.3.3. The robustness estimate presents a bound on what perturbations

a signal may tolerate without changing the Boolean truth value of the specification.

For the purposes of the following discussion, we use the notation [[φ]] to denote the

robustness estimate with which the timed state sequence µ satisfies the specification

φ. Formally, the valuation function for a given formula φ is [[φ]] : Y N × T×N → R.

In the definition below, we also use the following notation : for Q ⊆ R, the preimage

of Q under τ is defined as : τ−1(Q) := {i ∈ N | τ(i) ∈ Q}. Also, given an α ∈ R

and I = 〈l, u〉, we define the timing interval shift operation as α+ I = 〈α+ l, α+ u〉.

Here, 〈 and 〉 are used to denote brackets or parentheses for closed and open intervals.

Definition 4.3.3 (Robustness Estimate [68]) Let µ = (y, τ) ∈ Y [0,T], and i, j, k ∈

N , then the robustness estimate of any formula MTL formula is defined as:

[[>]](µ, i) := +∞

[[⊥]](µ, i) := −∞

[[p]](µ, i) := Distd(y(i),O(p))

[[¬p]](µ, i) := −Distd(y(i),O(p))

[[φ1 ∨ φ2]](µ, i) := max([[φ1]](µ, i), [[φ2]](µ, i))

[[φ1 ∧ φ2]](µ, i) := min([[φ1]](µ, i), [[φ2]](µ, i))

[[φ1 UIφ2]](µ, i) :=

max
j∈τ−1(τ(i)+I)

(
min([[φ2]](µ, j), min

i≤k<j
[[φ1]](µ, k))

)
[[φ1RIφ2]](µ, i) :=

min
j∈τ−1(τ(i)+I)

(
max([[φ2]](µ, j), max

i≤k<j
[[φ1]](µ, k))

)

68

When i = 0, then we write [[φ]](µ).

Example 4.3.1 As an example, consider the trajectory in Fig. 4.3 (left) and the

specification 3[0,30]p, where p ≡ (ω ≥ 3500) and O(p) = [3500,+∞). Assume that

the signal is sampled at every second, i.e. τ(i+ 1)− τ(i) = 1 such that τ−1([0, 30]) =

{0, 1, 2 . . . 30}. Then, the robustness of the formula is:

[[3[0,30]p]] = max
i∈τ−1([0,30])

Distd(y(i),O(p)) = max
i∈τ−1([0,30])

y(i)− 3500 = −113

which corresponds to the maximum of the distance between the trajectory and the set

O(p). In this case, the maximum is found at i = 30 and it is negative because the

signal never exceeds the 3500 threshold. Further examples can be found in [68].

The robustness of an MTL formula with respect to a timed state sequence can be

computed using several existing algorithms [68, 66, 59]. If we consider the robustness

estimate over systems, the resulting robustness landscape can be both nonlinear and

non-convex. In Fig. 4.2, we present the robustness landscape for the two running

examples, namely Examples 2.6.1 (AT) and 2.6.3 (HS), on two specifications.

We note that in the S-TaLiRo testing framework described in Section 2.5, MTL

requirements can have both Boolean and physical constraints for their predicates.

For example, consider the following temporal logic specification for an automotive

system: φ = 2(gear1 → (speed < 40)). Here, the specification states that always,

while in gear 1, the speed of the vehicle should be less than 40. We note that without

additional information, the Boolean component (gear1) will produce flat robustness

semantics, i.e. the search space will be flat with respect to that predicate. To resolve

this issue, the testing framework requires additional information. For example, in [2],

the authors utilize a graph structure which describes the relationship between the

locations of the system. In our example, that would be the gears of the vehicle and

69

0
20

40
60

01020304050
-60

-50

-40

-30

-20

-10

0

10

20

30

u1u2

R
ob

us
tn

es
s

-1

0

1

-1-0.500.51
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

x
1x

2

R
ob
us
te
ns
s

Figure 4.2: Robustness estimate landscape for two system specifications. Left: Ex-

ample 2.6.1 (AT): φAT = ¬(3[0,30](v > 100)∧2(ω ≤ 4500))∧¬3[10,40]2[0,5](60 < v ≤

80)∧¬3[50,60]2[0,3](v ≤ 60). The input signal to the system is generated by linearly in-

terpolating control points u1, u2 at time 0 and 60, respectively, for the throttle input u.

That is, u(t) = 60−t
60
u1 + t

60
u2.; Right: Example 2.6.3 (HS): φHS = 2[0,2]¬a∧2[0,2]¬b,

where O(a) = [−1.6,−1.4]2 and O(b) = [3.4, 3.6] × [−1.6,−1.4]. Here x1 and x2 are

initial conditions for the hybrid system.

the transition conditions between the gears. Using that information, the robustness

semantics are modified so that the search problem is steered towards system locations

of interest (in our case, that would gear 1). In [7], the authors take a different

approach. There, the robustness semantics utilized are defined as integrals over the

duration, and therefore both space and time are captured, but distance information

is lost.

4.4 Monotonicity of Parametric Metric Temporal Logic Formulas

The syntax of Parametric MTL is formally presented in Section 2.4. Since the

valuation function of an MTL formula is a composition of minimum and maximum

operations quantified over time intervals, a formula φ[θ], when θ is a scalar, is always

70

monotonic with respect to θ under certain conditions. Similarly, when ~θ is a vector,

then the valuation function is monotonic with respect to a priority function f(~θ). In

general, determining the monotonicity of PMTL formulas is undecidable [91]. The

priority function will enable the system engineer to prioritize the optimization of

some parameters over others by defining specific weights, or setting an optimization

strategy such as optimizing the minimum, maximum, or norm of all parameters. The

priority function will be defined in detail in the next section.

In the following, we present monotonicity results for single and multiple parameter

PMTL formulas. We note that the monotonicity results apply to a subset of PMTL.

4.4.1 Single parameter PMTL formulas

The first example presented shows how monotonicity appears in the timing re-

quirements of PMTL formulas.

Example 4.4.1 (AT) Consider the PMTL formula φ[θ] = 2[0,θ]p where p ≡ (ω ≤

3250). Given a timed state sequence µ = (y, τ) with τ(0) = 0, for θ1 ≤ θ2, we have:

[0, θ1] ⊆ [0, θ2] =⇒ τ−1([0, θ1]) ⊆ τ−1([0, θ2]).

Therefore, by Definitions (4.3.2) and (4.3.3) we have

[[φ[θ1]]](µ) = min
i∈τ−1([0,θ1])

(−Distd(y(i),O(p)))

≥ min
i∈τ−1([0,θ2])

(−Distd(y(i),O(p))) = [[φ[θ2]]](µ).

That is, the function [[φ[θ]]](µ) is non-increasing with respect to θ. Intuitively, this

relationship holds since by extending the value of θ in φ[θ], it becomes just as or

more difficult to satisfy the specification. See Fig. 4.3 for an example using an output

trajectory from the system in Example 2.6.1. 4

71

0 5 10 15 20 25 30
1000

1500

2000

2500

3000

3500

t

ω
(t

)

0 5 10 15 20 25 30
−1000

0

1000

2000

3000

θ

R
ob

us
te

ns
s

Figure 4.3: Example 4.4.1. Left: Engine speed ω(t) for constant throttle u(t) = 50.

Right: The robustness estimate of the specification 2[0,θ](ω ≤ 3250) with respect to

θ.

The aforementioned example is formalized by the following monotonicity results.

Lemma 4.4.1 Consider a PMTL formula φ[θ] such that it contains one or more

subformulas φ1OpI[θ]φ2 where Op ∈ {U ,R}. Then, given a timed state sequence

µ = (y, τ), for θ1, θ2 ∈ R≥0, such that θ1 ≤ θ2, and for i ∈ N , we have:

1. if for all such subformulas, we have (i) Op = U and max I(θ) = θ or (ii)

Op = R and min I(θ) = θ, then [[φ[θ1]]](µ, i) ≤ [[φ[θ2]]](µ, i), i.e., the function

[[φ[θ]]](µ, i) is non-decreasing with respect to θ.

2. if for all such subformulas, we have (i) Op = R and max I(θ) = θ or (ii)

Op = U and min I(θ) = θ, then [[φ[θ1]]](µ, i) ≥ [[φ[θ2]]](µ, i), i.e., the function

[[φ[θ]]](µ, i) is non-increasing with respect to θ.

A sketch of the proof is in Appendix A. Note that Lemma 4.4.1 allows for the

repetition of a parameter in a PMTL formula. For example, consider the specification

φ = 2[θ,5]a ∧ 3[0,θ]b ≡ ⊥R[θ,5]a ∧ >U[0,θ]b. In this case, φ satisfies the conditions in

Lemma 4.4.1. Thus, from Lemma 4.4.1 we know that for two values θ1 and θ2 where

72

θ1 ≤ θ2:

[[2[θ1,5]a ∧3[0,θ1]b]](µ, i) ≤ [[2[θ2,5]a ∧3[0,θ2]b]](µ, i)

In the following, we derive similar results for the case where the parameter appears

in the numerical expression of the atomic proposition.

Lemma 4.4.2 Consider a PMTL formula φ[θ] with a single parameter variable θ

such that it contains parametric atomic propositions p1[θ]...pn[θ] in one or more sub-

formulas. Then, given a timed state sequence µ = (y, τ), for all θ1, θ2 ∈ R≥0, such

that θ1 ≤ θ2, and for i ∈ N , we have:

• if ∀j.pj[θ] ≡ gj(x) ≤ θ, then [[φ[θ1]]](µ, i) ≤ [[φ[θ2]]](µ, i), i.e., the function

[[φ[θ]]](µ, i) is non-decreasing with respect to θ, and

• if ∀j.pj[θ] ≡ gj(x) ≥ θ, then [[φ[θ1]]](µ, i) ≥ [[φ[θ2]]](µ, i), i.e., the function

[[φ[θ]]](µ, i) is non-increasing with respect to θ.

A sketch of the proof is in Appendix A.

4.4.2 Multiple parameter PMTL formulas

Next, we extend the result for multiple parameters.

Example 4.4.2 (AT) Consider the PMTL formula φ[~θ] = ¬(3[0,θ1] q∧2p[θ2]) where

~θ = [θ1, θ2]ᵀ, p[θ2] ≡ (ω ≤ θ2) and q ≡ (v ≥ 100). Given a timed state sequence

µ = (y, τ) with τ(0) = 0, for two vectors of parameters ~θ, ~θ′ ∈ R2 where ~θ � ~θ′, for

73

all i, we have:

θ2 ≤ θ′2 =⇒ O(p[θ2]) ⊆ O(p[θ′2]) =⇒

Distd(y(i),O(p[θ2])) ≤ Distd(y(i),O(p[θ′2])) =⇒

−Distd(y(i),O(p[θ2])) ≥ −Distd(y(i),O(p[θ′2])) (4.1)

θ1 ≤ θ′1 =⇒ [0, θ1] ⊆ [0, θ′1] =⇒

τ−1([0, θ1]) ⊆ τ−1([0, θ′1]) (4.2)

Therefore, by (4.1) and (4.2) we obtain:

[[φ[~θ]]](µ) = min
i∈τ−1([0,θ1])

(−Distd(y(i),O(p[θ2])))

(2)

≥ min
i∈τ−1([0,θ1])

(−Distd(y(i),O(p[θ′2])))

(3)

≥ min
i∈τ−1([0,θ′1])

(−Distd(y(i),O(p[θ′2]))) = [[φ[~θ′]]](µ)

That is, the function [[φ[~θ]]](µ) is non-increasing for all ~θ for which the relation �

holds. N

Example 4.4.3 (AT) Consider the PMTL formula φ[~θ] = �(p[θ1] ∧q[θ2]) where

p[θ1] ≡ (v ≤ θ1) and q[θ2] ≡ (ω ≤ θ2). Given a timed state sequence µ = (y, τ) with

τ(0) = 0, for two vectors of parameters ~θ, ~θ′ where ~θ � ~θ′, we have:

O(p[θ1]) ⊆ O(p[θ′1]) =⇒

Distd(O(p[θ1])) ≤ Distd(O(p[θ′1])) =⇒

[[p[θ1]]](µ, i) ≤ [[p[θ′1]]](µ, i)

and

O(q[θ2]) ⊆ O(q[θ′2]) =⇒

Distd(O(p[θ2])) ≤ Distd(O(p[θ′2])) =⇒

[[q[θ2]]](µ, i) ≤ [[q[θ′2]]](µ, i)

74

Therefore, [[φ[~θ]]](µ) ≤ [[φ[~θ′]]](µ). That is, the function [[φ[~θ]]](µ) is non-decreasing

for all ~θ for which the relation � holds. Figure 4.4 presents the robustness landscape

of two parameters over constant input. N

Now we may state the main monotonicity theorem for multiple parameters. We

remark that for convenience we define the parametric subformulas over all the possible

parameters even though only some of them are used in each subformula.

Theorem 4.4.1 Consider a PMTL formula ψ[~θ], where ~θ is a vector of parameters,

such that ψ[~θ] contains temporal subformulas φ[~θ] = φ1[~θ]OpI[θs]φ2[~θ], Op ∈ {U ,R},

or propositional subformulas φ[~θ] = p[~θ]. Then, given a timed state sequence µ =

(y, τ), for ~θ, ~θ′ ∈ Rn

≥0, such that ~θ � ~θ′, where 1 ≤ j ≤ n, and for i ∈ N , we have:

• if for all such subformulas (i) Op = U and max I(θs) = θs or (ii) Op = R and

min I(θs) = θs or (iii) p[~θ] ≡ g(x) ≤ ~θ, then [[φ[~θ]]](µ, i) ≤ [[φ[~θ′]]](µ, i), i.e.,

function [[φ[~θ]]](µ, i) is non-decreasing with respect to ~θ,

• if for all such subformulas (i) Op = R and max I(θs) = θs or (ii) Op = U and

min I(θs) = θs or (iii) p[~θ] ≡ g(x) ≥ ~θ, then [[φ[~θ]]](µ, i) ≥ [[φ[~θ′]]](µ, i), i.e.,

function [[φ[~θ]]](µ, i) is non-increasing with respect to ~θ.

A sketch of the proof is in Appendix A.

In this section, we have presented several cases where we can syntactically deter-

mine the monotonicity of the PMTL formula with respect to its parameters. However,

we remark that in general, determining the monotonicity of PMTL formulas is unde-

cidable [91].

4.5 Temporal Logic Parameter Bound Computation

The notion of robustness of temporal logics will enable us to pose the parameter

mining problem as an optimization problem. In order to solve the resulting optimiza-

75

0 1000 2000 3000 4000 5000 6000 7000

0
20

40
60

−1000

0

1000

2000

3000

4000

Engine Speed Parameter

Timing Parameter

R
ob

us
tn

es
s

V
al

ue

(28s, 3360rpm)

0 1000 2000 3000 4000 5000 6000 7000
0

100

200
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

Engine Speed Parameter

Vehicle Speed Parameter

R
ob

us
tn

es
s

V
al

ue

(101mph, 3350rpm)

Figure 4.4: Top: Example 4.4.2: Robustness estimate landscape for varying parame-

ters for engine and vehicle speed for constant throttle u(t) = 50. Bottom: Example

4.4.3: Robustness landscape for varying parameters for timing parameter and engine

speed for constant throttle u(t) = 50. In both figures, the contour line shows the

intersection of the robustness landscape with the zero level set.

76

tion problem, falsification methods and S-TaLiRo [126] can be utilized to estimate

the solution for Problem 4.2.1.

As described in the previous section, the parametric robustness functions that we

are considering are monotonic with respect to the search parameters. Therefore, if

we are searching for a parameter vector over an interval Θ = [~θ,~θ], where Θ is a

hypercube and ~θ = [θ1, θ2, . . . , θn]ᵀ and ~θ = [θ1, θ2, . . . , θn]ᵀ, we are either trying to

minimize or maximize a function f of ~θ such that for all ~θ ∈ Θ∗, we have [[φ[~θ]]](Σ) ≤ 0.

Example 4.5.1 (AT) Let us consider again the automotive transmission example

and the specification φ[θ] = 2[0,θ]p where p ≡ (ω ≤ 4500). The specification robustness

[[φ[θ]]](∆Σ(u)) as a function of θ and the input u appears in Fig. 4.5 for constant input

signals. The creation of the graph required 100×30 = 3, 000 simulations. The contour

under the surface indicates the zero level set of the robustness surface, i.e., the θ and

u values for which we get [[φ[θ]]](∆Σ(u)) = 0. From the graph, we can infer that

θ∗ ≈ 2.8 and that for any θ ∈ [2.8, 30], we have [[φ[θ]]](Σ) ≤ 0. The approximate

value of θ∗ is an estimate based on the granularity of the grid that we used to plot the

surface. N

In summary, in order to solve Problem 4.2.1, we would have to solve the following

optimization problem:

optimize f(~θ) (4.3)

subject to ~θ ∈ Θ and

[[φ[~θ]]](Σ) = min
µ∈Lτ (Σ)

[[φ[~θ]]](µ) ≤ 0

Where f : Rn → R is a either a non-increasing (≥) or a non-decreasing (≤)

function. For two vector parameter values ~θ, ~θ′, if ~θ � ~θ′ and ~θ ≥ 0 then f(~θ) ./ f(~θ′),

where ./ ∈ {≥,≤} depending on the monotonicity.

77

0
10

20

30

0
20

40
60

80
100

−1000

0

1000

2000

3000

4000

θ
u

R
ob
us
te
ns
s

2.8

Figure 4.5: Example 4.5.1: Specification robustness estimate as a function of param-

eter θ and input u for specification φ[θ] = 2[0,θ](ω ≤ 4500).

The function [[φ[~θ]]](Σ) can not be computed using reachability analysis algorithms

nor is known in closed form for the systems we are considering. Therefore, we will

have to compute an under-approximation of Θ∗. Our focus will be to formulate

an optimization problem that can be solved using stochastic search methods. In

particular, we will reformulate the optimization problem (4.3) into a new one where

the constraints due to the specification are incorporated into the cost function:

optimize~θ∈Θ

f(~θ) +


γ ± [[φ[~θ]]](Σ)

if [[φ[~θ]]](Σ) ≥ 0

0 otherwise

 (4.4)

where the sign (±) and the parameter γ depend on whether the problem is a max-

imization or a minimization problem. The parameter γ must be properly chosen so

that the solution of problem (4.4) is in Θ if and only if [[φ[~θ]]](Σ) ≤ 0. Therefore, if

78

the problem in Eq. (4.3) is feasible, then the optimal points of Eq. (4.3) and Eq.

(4.4) are the same.

4.5.1 Non-increasing Robustness Functions

In the case of non-increasing robustness functions [[φ[~θ]]](Σ) with respect to the

search vector variable ~θ, the optimization problem is a minimization problem. With-

out loss of generality, let us consider the case for single parameter specifications.

Assume that [[φ[θ]]](Σ) ≤ 0. Since θ ≤ θ, we have [[φ[θ]]](Σ) ≥ [[φ[θ]]](Σ), we need to

find the minimum θ such that we still have [[φ[θ]]](Σ) ≤ 0. That θ value will be the

desired θ∗ since for all θ′ ∈ [θ∗, θ], we will have [[φ[θ′]]](Σ) ≤ 0.

We will reformulate the problem of Eq. (4.4) so that we do not have to solve two

separate optimization problems. From (4.4), we have:

min
~θ∈Θ

f(~θ) +


γ + minµ∈Lτ (Σ)[[φ[~θ]]](µ)

if minµ∈Lτ (Σ)[[φ[~θ]]](µ) ≥ 0

0 otherwise

 =

= min
~θ∈Θ

f(~θ) + min
µ∈Lτ (Σ)


γ + [[φ[~θ]]](µ)

if [[φ[~θ]]](µ) ≥ 0

0 otherwise

 =

= min
~θ∈Θ

min
µ∈Lτ (Σ)

f(~θ) +


γ + [[φ[~θ]]](µ)

if [[φ[~θ]]](µ) ≥ 0

0 otherwise

 (4.5)

The previous discussion is formalized as follows.

Proposition 4.5.1 Let ~θ∗ be a set of parameters and µ∗ be the system trajectory

returned by an optimization algorithm that is applied to the problem in Eq. (4.5). If

[[φ[~θ∗]]](µ∗) ≤ 0, then for all ~θ � ~θ∗, [[φ[~θ]]](Σ) ≤ 0.

79

 𝜃

𝜃

𝜃∗

𝜃′

𝜃

𝜃1

𝜃2 𝜃

𝜃

𝜃∗

𝜃′

𝜃

𝜃1

𝜃2 𝜃

𝜃

𝜃∗

𝜃′

𝜃

𝜃1

𝜃2

Figure 4.6: Illustration of the arrangement of parameters for non-increasing (Left)

and non-decreasing (Right) robustness functions for a two parameter specification.

The green (red) region represents parameter valuations for which we have a positive

(negative) robustness value over all system behaviors.

Proposition 4.5.2 If f(~θ) = ‖~θ‖, and the robustness function is non-increasing,

then γ = ‖~θ‖ is a valid choice for parameter γ. Here, ‖ · ‖ denotes the euclidean

norm.

The proofs for Propositions 4.5.1 and 4.5.2 are in Appendix A.

Example 4.5.2 (AT) Using Eq. (4.5) as a cost function, we can now compute a

parameter for Example 4.5.1 using S-TaLiRo [19, 126]. In particular, using Simu-

lated Annealing as a stochastic optimization function, S-TaLiRo returns θ∗ ≈ 2.45

as optimal parameter for constant input u(t) = 99.81. The corresponding temporal

logic robustness for the specification 2[0,2.45](ω ≤ 4500) is −0.0445. The number of

tests performed for this example was 500 and, potentially, the accuracy of estimating

θ∗ can be improved if we increase the maximum number of tests. However, based on

100 tests the algorithm converges to a good solution within 200 tests. N

Example 4.5.3 (AT) Let us consider again the automotive transmission example

and the specification φ[θ] = 2[0,θ]p where p ≡ (ω ≤ 4500). Using Eq. (4.5) as a cost

80

Figure 4.7: Example 2.6.3: Specification falsification for φ[~θ] = 2[0,θ1]¬a[~θ] where

O(a[~θ]) = [1.5, θ2]×[1, θ3] with mined parameters θ1 = 3.417, θ2 = 1.7, and θ3 = 1.078.

function, we can now compute a parameter using S-TaLiRo [19, 126]. In particular,

using Simulated Annealing as a stochastic optimization function, S-TaLiRo returns

θ∗ ≈ 2.45 as optimal parameter for constant input u(t) = 99.81. The corresponding

temporal logic robustness for the specification 2[0,2.45](ω ≤ 4500) is −0.0445. The

number of tests performed for this example was 500 and, potentially, the accuracy of

estimating θ∗ can be improved if we increase the maximum number of tests. However,

based on 100 runs the algorithm converges to a good solution within 200 tests. N

Example 4.5.4 (HS) Let us consider the specification φ[~θ] = 2[0,θ1]¬a where O(a) =

[1.5, θ2]× [1, θ3] on our hybrid system running example from Section 2.6.3. Here, the

bounds for the timing parameter are θ1 ∈ [0, 5] and the bounds for the state parameters

are θ2 ∈ [1.5, 2.1] and θ3 ∈ [1.1, 1.6]. The ranges for the parameters are chosen based

on prior knowledge and experience about the system. The parameter mining algorithm

81

from S-TaLiRo returns θ∗1 = 3.417, θ∗2 = 1.7, and θ∗3 = 1.078 after running 1000

tests on the system. The generated trajectories by the parameter mining algorithm

are presented in Fig. 4.7. The returned parameters guarantee that the system does

not satisfy the specification for all parameters ~θ where ~θ∗ � ~θ. N

4.5.2 Non-decreasing Robustness Functions

The case of non-decreasing robustness functions is symmetric to the case of non-

increasing robustness functions. In particular, the optimization problem is a maxi-

mization problem. We will reformulate the problem of Eq. (4.4) so that we do not

have to solve two separate optimization problems. From (4.4), we have:

max
~θ∈Θ

f(~θ) +


γ −maxµ∈Lτ (Σ)[[φ[~θ]]](µ)

if maxµ∈Lτ (Σ)[[φ[~θ]]](µ) ≥ 0

0 otherwise

 =

= max
~θ∈Θ

f(~θ) + max
µ∈Lτ (Σ)


γ − [[φ[~θ]]](µ)

if − [[φ[~θ]]](µ) ≤ 0

0 otherwise

 =

= max
~θ∈Θ

max
µ∈Lτ (Σ)

f(~θ) +


γ − [[φ[~θ]]](µ)

if [[φ[~θ]]](µ) ≥ 0

0 otherwise

 (4.6)

The previous discussion is formalized in the following result.

Proposition 4.5.3 Let ~θ∗ be a set of parameters and µ∗ be the system trajectory

returned by an optimization algorithm that is applied to the problem in Eq. (4.6). If

[[φ[~θ∗](µ∗) ≤ 0, then for all ~θ � ~θ∗, we have [[φ[θ]]](Σ) ≤ 0.

Proposition 4.5.4 If f(~θ) = ‖~θ‖ and the robustness function is non-decreasing, then

γ = −‖~θ‖ is a valid choice for parameter γ.

82

0
10

20
30

0
20

40
60

80
100

−1000

0

1000

2000

3000

4000

θ
u

R
ob
us
te
ns
s

13.8 0 10 20 30 40 50 60 70 80 90 100
−500

0

500

1000

1500

2000

2500

3000

3500

4000

u

R
ob

us
te

ns
s

Figure 4.8: Example 4.5.5. Left: Specification robustness as a function of the parame-

ter θ and the input u. Right: The robustness function [[2[12.59,30](ω ≤ 4500)]](∆Σ(u)).

The proofs for Propositions 4.5.3 and 4.5.4 are in Appendix A.

Example 4.5.5 (AT) Let us consider the specification φ[θ] = 2[θ,30] (ω ≤ 4500) on

our running example. The specification robustness [[φ[θ]]](∆Σ(u)) as a function of

θ and the input u appears in Fig. 4.8 for constant input signals. The creation of

the graph required 100 × 30 = 3, 000 tests. The contour under the surface indicates

the zero level set of the robustness surface, i.e., the θ and u values for which we get

[[φ[θ]]](∆Σ(u)) = 0. We remark that the contour is actually an approximation of the

zero level set computed by a linear interpolation using the neighboring points on the

grid. From the graph, we could infer that θ∗ ≈ 13.8 and that for any θ ∈ [0, 13.8],

we would have [[φ[θ]]](Σ) ≤ 0. Again, the approximate value of θ∗ is a rough estimate

based on the granularity of the grid.

Using Eq. (4.6) as a cost function, we can now compute a parameter for Example

4.5.5 using our toolbox S-TaLiRo [19, 126]. S-TaLiRo returns θ∗ ≈ 12.59 as

optimal parameter for constant input u(t) = 90.88 within 250 tests. The temporal

logic robustness for the specification 2[12.59,30](ω ≤ 4500) with respect to the input u

appears in Fig. 4.8 (Right). N

83

4.6 Parameter Falsification Domain

We utilize the solution of Problem 4.2.1 and exploit the robustness landscape

of a specific class of temporal logic formulas to present two algorithms to estimate

Ψ = {~θ∗ ∈ Θ | Σ 6|= φ[~θ∗]} for Problem 4.2.1. In fact, we can reduce this problem to

finding the set Θbd = Ψ ∩ {~θ∗ ∈ Θ | [[φ[~θ∗]]](Σ) = 0} since the robustness landscape

is monotonic. Here, Θbd represents the intersection of the robustness function with

the zero level set. As a preprocessing step, the PMTL parameters are normalized

in the range [0, 1] to avoid bias during the optimization process. It is important to

note, that due to the undecidable nature of the problem, we cannot determine sat-

isfying parameter values. Therefore, we generate the parameter falsification domain

by finding only falsifying parameter values.

4.6.1 RGDA Algorithm

The first method approximates Θbd by modifying the priority function f and

thereby slightly shifting the minimum or maximum of the objective function in Eq.

(4.5) or Eq. (4.6), respectively. The magnitude of the shift depends on the shape of

the robustness landscape of the model and specification.

As shown in Algorithm 2, the set Ψ is explored iteratively. For use in the al-

gorithm, we define a PMTL specification monotonicity function M : PMTL →

{−1, 0, 1} where

M(φ[~θ]) =


1 if φ[~θ] is non-decreasing;

−1 if φ[~θ] is non-increasing;

0 otherwise.

A monotonicity computation algorithm is presented in [21] and generalized in [91].

For every iteration of the algorithm, we draw a random vector ω with dimension

84

Algorithm 2 Robustness Guided Parameter Falsification Domain Algorithm
RGDA(opt, Γ, Θ, φ, Σ, n, t)

Input: Stochastic optimization algorithm opt, search space Γ, parameter range Θ,
specification φ, system Σ, number of iterations n and tests t
Output: Parameter falsification domain Ψ

Internal Variables: Parameter weights ~ω, parameters mined ~θ∗ and robustness
value γ

1: 〈Ψ, ~ω, ~θ∗, γ〉 ← 〈∅, ∅, ∅, ∅〉
2: for i = 0 to n do
3: ~ω ← RandomVector([0, 1], dimension(Θ))

4: [~θ∗, γ]← opt(Γ,Θ, φ,Σ, t, ~ω,M(φ[~θ∗])) . run parameter mining and
robustness computation

5: if (γ ≤ 0) then

6: if (M(φ[~θ∗]) = 1) then

7: Ψ← Ψ ∪ {~θ ∈ Θ | ∀i (0 ≤ θi ≤ θ∗i)} . expand the falsification domain
Ψ

8: else if (M(φ[~θ∗]) = −1) then

9: Ψ← Ψ ∪ {~θ ∈ Θ | ∀i (θi ≥ θ∗i ≥ 0)}
10: end if
11: end if
12: end for
13: return Ψ

equal to the dimension of Θ. The random vector is used as parameter weights for

the priority function f(~θ). Namely, f(~θ) =
∑
wiθi. We run parameter mining,

which returns an approximation for Eq. (4.4). In case φ[~θ] is non-decreasing (or

non-increasing), the optimization algorithm opt is a maximization (or minimization)

algorithm. We utilize the values mined and the corresponding robustness value to

expand Ψ and reduce the unknown parameter range for the next iteration. We present

the iterative process in Fig. 4.9. In the example presented, for each parameter weight,

100 tests are conducted. The running time for 100 iterations was 53.63 minutes on

a computer with Windows Server 2012 OS, Intel Xeon E5-2670v2 2.5GHz CPU, and

64GB of RAM.

85

0 20 40 60
3000

4000

5000

6000

7000

8000
n=1

0 20 40 60
3000

4000

5000

6000

7000

8000
n=2

0 20 40 60
3000

4000

5000

6000

7000

8000
n=50

0 20 40 60
3000

4000

5000

6000

7000

8000
n=100

Figure 4.9: Illustration of the iterative process for Algorithm 2. Specification: φ[~θ] =

¬(3[0,θ1]q ∧ 2p[θ2]) where p[θ2] ≡ (ω ≤ θ2) and q ≡ (v ≥ 100). Model: Automatic

Transmission as described in Example 2.6.1. The red colored set represents set Ψ =

{~θ ∈ Θ | Σ 6|= φ[~θ]}, i.e., the set of parameter values such that the system does not

satisfy the specification. In each iteration of the algorithm, set Ψ gets expanded by

the optimal falsifying parameter which is guided by the robustness landscape and the

random weight in the priority function.

4.6.2 SDA Algorithm

The second algorithm presented explores the set Θbd by iteratively expanding the

set of falsifying parameters, namely, the set Ψ. However, in this case, the search

is finely structured and does not depend on randomized weights. For presentation

purposes, let us consider the case for specifications with non-decreasing monotonic-

ity. Given a normalized parameter range with dimension η, in each iteration of the

86

algorithm, we solve the optimization problem:

maximize c (4.7)

subject to c ∗~b+ ~p ∈ Θ and

Σ 6|= φ[c ∗~b+ ~p]

where ~p is the starting point of the optimization problem in each iteration and ~b is

the bias vector which enables to prioritize specific parameters in the search. Namely,

the choice of ~b directs the expansion of the parameter falsification domain along a

specific direction. We refer to the solution of Eq. (4.7) in the ith iteration of the

algorithm as marker(i). Initially, for the first iteration, the value of ~p is set to ~0 or

~1 depending on the monotonicity of the specification. The returned marker(1) from

Eq. (4.7) is then utilized to update Ψ, the set of parameters for which the system

does not satisfy the specification. Next, we generate at most 2η − 2 initial position

vectors induced by the returned marker(1).

Consider the example presented in Fig. 4.10 where we have marker(1) = [136; 7268].

That value is utilized to update Ψ and generate two new initial position vectors at

[0; 7268] and [136; 0]. In the next iteration of the algorithm, the search is initialized

in one of the newly generated initial position vectors. Namely, the search starts in

[0; 7268] or [136; 0] (see Fig. 4.10, Left). The initial position vector not utilized is

stored in a list to be used in future iterations. In the second iteration, [136; 0] is used

as the initial position vector. We return the solution to Eq. (4.7) with marker(2)

= [143; 4425] which generates the initial position vectors [143; 0] and [136; 4425] (Fig.

4.10, Middle). Similarly, marker(3) is generated in Fig. 4.10 (Right). In this ex-

ample, the directional vector ~b, in each iteration, directs toward the bounds of the

parameter range, namely (160, 8000). The algorithm terminates when one of the fol-

lowing conditions is met: 1) The distance between markers is less than some value

87

0 20 40 60 80 100 120 140 160

3000

4000

5000

6000

7000

8000
i =1

θ* = [136;7268]

b

0 20 40 60 80 100 120 140 160

3000

4000

5000

6000

7000

8000
i =2

θ*= [143;4425]

0 20 40 60 80 100 120 140 160

3000

4000

5000

6000

7000

8000
i =3

θ*= [114;7779]

1 2

3 3

2

3

Figure 4.10: Illustration of the iterative process for Algorithm 3. Specification: φ[~θ] =

2(p[θ1] ∧ q[θ2]) where p[θ1] ≡ (v ≤ θ1) and q ≡ (ω ≤ θ2). Model: Automatic

Transmission as described in Example 2.6.1. The parameter range for the specification

is Θ = [0 160; 3000 8000]. In each plot, the search is conducted in a specific direction

~b. The plots from left to right represent three iterations of Algorithm 3. The yellow

circles and green marks represent sample points of the search optimizer in the process

of solving Eq. (4.7). Specifically, the yellow circles represent parameter values for

which we have found system inputs and initial conditions that falsify the specification.

The green marks represent parameter values for which falsification is not found. The

largest yellow circle found by the stochastic optimizer is returned as the current

marker. The orange squares represent the initial position of the search in the current

iteration. The blue squares represent the initial positions generated by the current

marker that will be considered in future iterations. The black squares represent initial

positions that will be considered in future iterations. The red colored set represents

set Ψ = {~θ ∈ Θ | Σ 6|= φ[~θ]}, i.e., the set of parameter values such that the system

does not satisfy the specification.

88

ε, or 2) no new markers are generated from the current set of initial position vectors,

or 3) a maximum number of iterations is exceeded. Experimentally, running the al-

gorithm for 100 iterations took 51.32 minutes on a computer with Windows Server

2012 OS, Intel Xeon E5-2670v2 2.5GHz CPU, and 64GB of RAM.

4.7 Experiments and a Case Study

The algorithms and examples presented in this work are implemented and publicly

available through the Matlab toolbox S-TaLiRo [19, 126].

The parametric MTL exploration of CPS is motivated by a challenge problem

published by Ford in 2002 [40]. In particular, the report provided a simple–but still

realistic–model of a powertrain system (both the physical system and the embedded

control logic) and posed the question whether there are constant operating conditions

that can cause a transition from gear two to gear one and then back to gear two. That

behavior would imply that the gear transition from 1 to 2 was not necessary in the

first place.

The system is modeled in Checkmate [134]. It has 6 continuous state variables

and 2 Stateflow charts with 4 and 6 states, respectively. The Stateflow chart for the

shift scheduler appears in Fig. 4.11. The system dynamics and switching conditions

are linear. However, some switching conditions depend on the initial conditions of

the system. The latter makes the application of standard system verification tools

not a straightforward task.

In [66], we demonstrated that S-TaLiRo [19, 126] can successfully solve the chal-

lenge problem (see Fig. 4.11) by formalizing the requirement as an MTL specification

φPe1 = ¬3(g2∧3(g1∧3g2)), where gi is a proposition that is true when the system is

in gear i. Stochastic search methods can be applied to solve the resulting optimization

problem where the cost function is the robustness of the specification.

89

Algorithm 3 Structured Parameter Falsification Domain Algorithm SDA(opt, Γ, Θ,

φ, Σ, t, ε, ~b, n)

Input: Stochastic optimization algorithm opt, search space Γ, parameter range Θ,
specification φ, system Σ, number of tests t, minimum distance between markers ε,

bias vector ~b, maximum number of iterations n
Output: Parameter falsification domain Ψ
Internal Variables: List of initial positions ML, termination condition T C, initial
positions generated in the current iteration T L, iteration i

1: 〈Ψ, ~p, T C, ML, T L, i〉 ← 〈∅, ∅, ⊥, {}, {}, 0〉
2: if (M(φ[~θ]) = 1) then

3: ML.Add(~0(dimension(Θ)))

4: else if (M(φ[~θ]) = −1) then

5: ML.Add(~1(dimension(Θ)))
6: end if
7: while T C = ⊥ do
8: T L ← {}
9: for ~v in ML do

10: i← i+ 1
11: [~θ∗, γ]← opt(Γ,Θ, φ,Σ, t, ω,M(φ[~θ]),~b, ~v) . run parameter mining

starting at ~v and search along the directional vector ~b
12: if (γ ≤ 0) then

13: T L.Add(GenerateMarkers(θ∗, M(φ[~θ])))

14: if (M(φ[~θ∗]) = 1) then

15: Ψ← Ψ ∪ {~θ ∈ Θ | ∀i (0 ≤ θi ≤ θ∗i }
16: Θ← Θ \Ψ

17: else if (M(φ[~θ∗]) = −1) then

18: Ψ← Ψ ∪ {~θ ∈ Θ | ∀i (θi ≥ θ∗i ≥ 0)}
19: Θ← Θ \Ψ
20: end if
21: end if
22: end for
23: ML← T L
24: if ML.IsEmpty() or DistanceBetweenMarkers(ML) < ε or i > n

then T C ← >
25: end if
26: end while
27: return Ψ

90

first_gear
entry: schedule =1;
STaliro_StateVar = 1;

transition12_shifting
entry : schedule = 2;
STaliro_StateVar = 2;

transition21_shifting
entry:schedule = 4;
STaliro_StateVar = 4;

second_gear
entry: schedule =3;
STaliro_StateVar = 3;

to_first

1

shift_speed12

shift_speed21

2

shift_speed12

2

to_second

1

shift_speed21

0 10 20 30 40 50 60
1

2

3

4

0 10 20 30 40 50 60
1

2

3

4

Figure 4.11: Left: The shift scheduler of the powertrain challenge problem. Right:

Shift schedules. The numbers correspond to the variables in the states of the shift

scheduler. Right Top: The shift schedule falsifying requirement φPe1. Right Bottom:

The shift schedule falsifying requirement φPe3[0.4273].

Moreover, inspired by the success of S-TaLiRo on the challenge problem, we tried

to ask a more complex question. Specifically, does a transition exist from gear two to

gear one and back to gear two in less than 2.5 sec? An MTL specification that can

capture this requirement is φPe2 = 2((¬g1∧Xg1)→ 2(0,2.5]¬g2). The natural question

that arises is what would be the smallest time for which such a transition can occur?

We can formulate a parametric MTL formula to query the model of the powertrain

system: φPe3[θ] = 2((¬g1 ∧ Xg1) → 2(0,θ]¬g2). We have extended S-TaLiRo to be

able to handle parametric MTL specifications. The total simulation time of the model

is set to 60 sec and the search interval is Θ = [0, 60]. S-TaLiRo returned θ∗ ≈ 0.4273

as the minimum parameter found (See Fig. 4.11) using about 300 tests of the system.

The challenge problem is extended to an industrial size high-fidelity engine model

(HAE) from Section 2.6.2. In this work, we will use the Port Fuel Injected (PFI)

spark ignition, 4 cylinder inline engine configuration. The model includes a tire-

91

model, brake system model, and a drive train model (including final drive, torque

converter and transmission). The inputs to the system are the throttle and brake

schedules, and the road grade, which represents the incline of the road. The outputs

are the vehicle and engine speed, the current gear and a timer that indicates the time

spent on a gear. We search for a particular input for the throttle schedule, brake

schedule, and grade level. The inputs are parameterized using 12 search variables,

where 7 are used to model the throttle schedule, 3 for the brake schedule, and 2

for the grade level. The search variables for each input are interpolated with the

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) function provided as a

Matlab function by Mathworks. The simulation time is 60s. We demonstrate the

parameter mining method for two specifications:

φS1 [θ] = 2[0,60]((g2 ∧ Xg1)→ 2[0,θ]((τ ≤ θ)→ g1))

where τ is the time spent in a gear. The specification states that after shifting into

gear one from gear two, there should be no shift from gear one to any other gear

within θ seconds. Clearly, the property defined is equivalent to the property defined

in the challenge problem in the sense that the set of trajectories that satisfy/falsify the

property is the same. The reason for the change made is the improved performance of

the hybrid distance metric [1] with the modified specification. The mined parameter

for the specification returned is 1.29s. Figure 4.12 presents a shift schedule for which

a transition out of gear one occurs in 1.28 seconds.

φS2 [~θ] = 2((v < θ1) ∧ (ω < θ2))

where θ1, θ2 represent the vehicle and engine speed parameters, respectively. The

specification states that the vehicle and engine speed is always less than θ1 and θ2,

respectively. The mined parameters for the specification returned are 137.1 mph and

4870 rpm.

92

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

1.28s

Figure 4.12: A shift schedule which falsifies the specification φS1 [θ = 1.29] =

2[0,60]((g2 ∧ Xg1) → 2[0,1.29]((τ ≤ 1.29) → g1)) on the Simuquest high-fidelity

engine model for specification.

In Table 4.1, we present experimental results for specifications on the Powertrain,

Automotive Transmission, and Simuquest Enginuity high-fidelity engine models. A

detailed description of the benchmark problems can be found in [2, 128] and the

benchmarks can be downloaded with the S-TaLiRo version 1.6 [126], with the Multi

Parametric Toolbox (MPT) version 3.0.

4.8 Related Work

In the following, we provide an overview of the related work in regard to several

models of computation of increasing complexity.

4.8.1 Parameter Mining Over Finite State Machines

Parametric temporal logics were first defined over traces of finite state machines in

[15]. The authors extend linear temporal logic to parametric temporal logic (PLTL),

in which temporal operators can be sub-scripted, together with a direction (≤, >),

by a variable ranging over natural numbers. There, the authors extend beyond the

“yes/no” approach of traditional model checking to a framework where, for specifi-

cations such as φ = 2(p → 3≤xq), they answer the questions “for what values of x

93

Table 4.1: Experimental results of Parameter Mining with S-TaLiRo. The parameters

were mined by running 1000 tests.

Specification S-TaLiRo

f(θ) Time (s) Parameters Mined

φAT1 [θ] = ¬3((v ≥ 120) ∧3[0,θ](ω ≥ 4500)) θ 135 7.7s

φAT2 [θ] = ¬3((v ≥ 120) ∧3[0,θ](v ≥ 125)) θ 138 10.00s

φAT3 [θ] = ¬3((v ≥ 120) ∧3[0,θ](ω ≥ 4500)) θ 137 7.57s

φAT4 [θ] = ¬3((v ≥ 120) ∧3[0,θ](ω ≥ 4500)) θ 132 7.56s

φAT5 [~θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2))

‖~θ‖ 139 〈138mph, 5981rpm〉

θ1 137 〈57mph, 6000rpm〉

θ2 138 〈180mph, 2910rpm〉

max(~θ) 138 〈109mph, 6000rpm〉

min(~θ) 138 〈154mph, 5300rpm〉

φAT6 [~θ] = ¬(3[0,θ1](v ≥ 100) ∧2(ω ≤ θ2))

‖~θ‖ 144 〈15.7s, 4820rpm〉

θ1 142 〈44.6s, 3598rpm〉

θ2 138 〈12.2s, 6000rpm〉

max(~θ) 140 〈37.3s, 3742rpm〉

min(~θ) 142 〈12.3s, 5677rpm〉

φAT7 [~θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2)) ∧

3[0,θ3](v ≥ 150) ∧3[0,θ4](ω ≥ 4500)

‖~θ‖ 145 〈198mph, 4932rpm, 59.5s, 55s〉

max(~θ) 143 〈129mph, 6000rpm, 48.9s, 28.3s〉

min(~θ) 142 〈190mph, 5575rpm, 55.1s, 54.8s〉

φAT8 [~θ] = 2((v ≤ θ1) ∧ (ω ≤

θ2)) ∧3[0,θ3](v ≥ 150) ∧3[0,θ4](ω ≥

4500) ∧2[θ5,60](v ≥ 170) ∧2[θ6,60](ω ≥ 4750)

‖~θ‖ 146 〈159mph, 5700rpm, 48.3s, 36.2s, 54.2s, 53.9s〉

max(~θ) 145 〈85.9mph, 6000rpm, 3.8s, 38.8s, 44.5s, 51.5s〉

min(~θ) 143 〈191mph, 4958rpm, 43s, 55.3s, 42s, 47.1s〉

φPe3[θ] = 2((¬g1 ∧Xg1)→ 2(0,θ]¬g2) θ 2600 0.1s

φS1 [θ] = 2[0,60]((g2 ∧ Xg1)→ 2[0,θ]((t ≤ θ)→ g1) θ 21803 1.29s

Legend: f(θ̃) : the priority function used, φAT
i : Specifications tested on the Auto-

motive Transmission Model, φP : Specification tested on the Powertrain Model, φS :

Specification tested on the Simuquest Enginuity high-fidelity Engine Model. The gray

colored rows are first presented in [147] and are included for completeness.

94

Table 4.2: Experimental comparison of the parameter mining method (A) presented

in this thesis and the parameter synthesis method (B) presented in [91].

Specification Method Parameters Mined Time (s) #Sim #Rob

φS2 [~θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2))
A 137.1 mph 4870 rpm 20170 1000 1000

B 149.8 mph 4883 rpm 50017 2386 5130

φAT5 [~θ] = 2((v ≤ θ1) ∧ (ω ≤ θ2))
A 100.2 mph 5987.6 rpm 106 1000 1000

B 137.5 mph 6000 rpm 253 2176 11485

φAT6 [~θ] = ¬(3[0,θ1](v ≥ 100) ∧2(ω ≤ θ2)
A 21 s 3580 rpm 110 1000 1000

B 59.06 s 3296 rpm 397 3443 9718

Legend: #Sim.: the number of system simulations, #Rob: the number of robust-

ness computations.

does the formula hold for the system being modeled?”. It is important to note that

timing here is of discrete nature (i.e., steps or transitions), e.g. 3≤xq states that “in

at most x steps q occurs”.

In [15], the authors provide several decidability results. Namely, given a system

modelK, represented by a Kripke structure, and a PLTL formula φ(θ1, ..., θn) with one

or more parameters, they provide algorithms for several problems. In the following,

we emphasize two problems/results presented in [15].

a) Is there a parameter valuation α for which the system satisfies the specification,

i.e., K |= φ(α) (emptiness)? To answer this question, the authors exploit monotonic-

ity results for PLTL specifications. In the following, we will consider the case for the

always operator. For 2≤y specifications, it suffices to check whether the specification

is satisfied at parameter value 0. If it does not hold, then that means that there

are no satisfying valuations. As a result, the formula reduces to checking whether

the model satisfies an LTL formula. For LTL model checking, we transform the LTL

formula φ into a Büchi Automaton. This new automaton might have a state space

95

size which is exponential to the length of φ. Then, we check whether the composition

of the Büchi Automaton and the finite machine has any accepting words. In fact, an

upper bound on the time complexity is O(|K| × 2|φ|) [24].

b) The authors explain that parameter mining is also a decidable problem. Namely,

for formulas with one or more parameters, they find a satisfying parameter valua-

tion which maximizes the maximum (or maximizes the minimum) parameter value.

Due to the the discrete nature of time imposed by the finite state machine, if given

a parameter bound [0, θ], this problem can be solved by utilizing a binary search

algorithm. For every value of the parameter, the formula can be flattened (ex.

2[0,2]φ = φ ∧ Xφ ∧ XXφ) to an LTL formula and the previously discussed LTL-

Büchi approach can be utilized to solve the problem. Note that this might increase

the length of the formula significantly. The computational complexity of this ap-

proach depends on several factors. For each parameter, the binary search algorithm

conducts log θ checks, each costing O(|K| × 2|φ|).

Another related problem is model exploration for finite state machines. The prob-

lem was initially introduced by Chan in [32] under the term Temporal Logic Queries.

The goal of model exploration is to help the designer achieve a better understand-

ing and explore the properties of a model of the system. Namely, the user may

pose a number of questions in a fragment of Computation Tree Logic (CTL) where

the atomic propositions are replaced by a placeholder and the algorithm will try to

find the set of atomic propositions for which the temporal logic formula evaluates

to true. Since the first paper [32], several authors have studied the problem and

proposed different versions and approaches [31, 35, 74, 136]. A related approach is

based on specification mining over temporal logic templates [144] rather than special

placeholders in a specific formula.

96

4.8.2 Parameter Mining Over Timed Automata

Timed automata (TA) are extensions of finite-state machines with clocks, which

impose timing requirements on the transitions of accepting runs. It turns out that,

most problems, such as universality (deciding whether the automaton accepts all

timed words over its alphabet), inclusion (whether the language of automaton A is a

subset of the language of automaton B) and equivalence (whether two automata are

equivalent) are undecidable for timed automata. In [14], the authors prove this by re-

duction from halting problem for 2-counter machines (equivalent to Turing Machines).

However, one of the advances in this area was the result that checking emptiness of

the language of a timed automaton is decidable [14]. The key to the solution lies in

the fact that the infinite state space can be partitioned in finitely many equivalence

classes. Namely, they show that a finite state region automaton that accepts exactly

the set of words accepted by a timed automaton can be constructed. Note that, this

result, in conjunction with the fact that Timed Automata are closed under intersec-

tion, means that we can conduct model checking. In more detail, given a TA A of

the system, and a TA B representing “bad behaviors” that are undesirable in the

system, we can find the product automaton C = A× B. If the language of C is not

empty, then there exists a bad behavior in the system. The complexity of deciding

emptiness is exponential in the number of clocks and the length of the constant in

the timing constraints. It is known to be PSPACE-Complete [14].

The problem of Parametric Temporal Logic over timed automata attracted the

interest of many researchers who were seeking to extend verification results to real-

time systems. In [17], the authors present Parametric Timed Automata, with the

goal to provide answers to problems as, “given a real-time system S, one may wish to

verify a property p of the system as long as the deadline d of an action is less than the

97

delay r in receiving an acknowledgment, r > d”. In that work, rather than temporal

logic, the authors use timed automata with parametric timing constraints. They

provide results on the problem of whether there exists parameters (language emptiness

problem) so that the Parametric Timed Automaton has an accepting run and they

show that the results are closely related to the number of clocks. For automata with

one parametrically constrained clock, emptiness can be decided. Namely, it can be

determined whether there exists a parameter such that the language of the automaton

is nonempty. However, they show that for three (or more) parametrically constrained

clocks, the problem is recognizable but undecidable. Other decision problems with

regards to parametric timed automata are studied in [28, 51].

In [28], the authors investigate L/U Timed Automata, where the timing constraint

appear either as a lower bound or as an upper bound. In other words, the set of the

parameters which can occur as a lower bound in a parametric clock constraint is

disjoint from set of parameters which can occur as an upper bound. For the class of

L/U Timed automata, the emptiness and universality problems are decidable. The

problems are PSPACE-Complete. Also, the authors provide a parameter synthesis

algorithm similar in nature to the solution provided in [15].

In [52], the authors present Parametric Metric Interval Temporal Logic (PMITL).

There, given a L/U Timed Automata A and a PMITL φ specification the authors

provide algorithms to determine whether there exists a parameter valuation v such

that there is a timed sequence in L(A) that satisfies φ with parameter v. Since

PMITL is closed under semantic negation, we can conduct model-checking using this

approach. The computational complexity of the problem is in EXPSPACE and follows

from the satisfiability and model-checking problems for MITL formulas [16].

98

4.8.3 Parameter Mining Over Hybrid Systems

Hybrid systems are modeled by hybrid automata (HA). HA are extensions of finite

state machines with the ability to model continuous behavior through algebraic and

differential equations. One subclass of Hybrid Automata are Linear Hybrid Automata

(LHA). A subclass of LHA are Timed Automata (TA). Therefore undecidability re-

sults for TA immediately hold for HA. In [12], the authors prove that the reachability

problem for LHA is undecidable. The result follows from the undecidability of the

halting problem for nondeterministic 2-counter machines. Therefore, since it is un-

decidable for LHA it is undecidable for HA in general.

The model checking of parametric temporal logic specifications over hybrid sys-

tems utilizes similar approaches as these methods do. The parametric identification

of temporal properties over signals is presented in [21]. Where given a signal, the

authors compute the subset of the parameter space that renders the formula satis-

fied by the trace. Although the logic is defined over dense-time real valued signals,

the signal analyzed is a sampled signal which is linearly interpolated. In [91], the

authors present a simulation based approach for mining state and timing parame-

ters for Parametric Metric Temporal Logic specification over hybrid systems. There,

the authors provide a parameter synthesis algorithm for Parametric Signal Tempo-

ral Logic (PSTL), a similar formalism to MTL. To conduct parameter synthesis for

multiple parameters, a binary search is utilized to set the parameter value for each

parameter in sequence. After a set of parameters is proposed, a stochastic optimiza-

tion algorithm is utilized to search for trajectories that falsify the specification. If it

fails to do so, the algorithm stops, otherwise this two step process continues until the

termination condition is met. The authors in [65, 124] define a parametric temporal

logic called quantifier free Linear Temporal Logic over real valued signals. However,

99

they focus on the problem of determining system parameters such that the system

satisfies a given property rather than on the problem of exploring the properties of a

given system.

In [99], the authors present an inference algorithm that finds temporal logic prop-

erties of a system from data. The authors introduce a reactive parametric signal

temporal logic and define a partial order over it to aid the property definition pro-

cess.

In the following, a detailed comparison between the method presented in this

thesis and the work in [91] is presented.

4.8.4 Comparison to the Parameter Synthesis Method

In [91], the authors provide a parameter synthesis algorithm for Parametric Signal

Temporal Logic (PSTL), a similar formalism to MTL. To conduct parameter synthe-

sis for multiple parameters, a binary search is utilized to set the parameter value for

each parameter in sequence. After a set of parameters is proposed, a stochastic opti-

mization algorithm is utilized to search for trajectories that falsify the specification.

If it fails to do so, the algorithm stops, otherwise this two step process continues until

the termination condition is met.

In the following, we present three main differences between the method proposed

here (A) and the method proposed in [91] (B). First, A is a best effort algorithm

for which the termination condition is the number of tests the system engineer is

interested to conduct. Clearly, the more tests, the better the search space is explored.

Since the parameter mining problem is presented as a single optimization problem,

runtime is not directly affected by the number of parameters in the specification.

In contrast, in B, the runtime of the algorithm through binary search is affected by

the number of parameters in the PSTL formula. For each iteration of the binary

100

search, multiple robustness computations have to be conducted, which for systems

that output a large trace and contain complex specifications, could become costly.

The second step in B is the falsification of the parameters proposed. This algorithm

needs to be performed on every iteration, until a falsification is found. If a falsifying

trajectory is not found, the stopping condition is met and the parameters are returned.

Second, inA, the parameters returned are the “best” parameters for which a falsifying

trajectory is found. In B, the proposed parameters are parameters for which no

falsifying trajectory is found. Proving that a specification holds for hybrid systems,

in general, is undecidable and, therefore the failure to find a falsifying trajectory does

not imply that one does not exist. Third, in A, through the priority function, we

enable the system engineer to have flexibility when assigning weights and priorities

to parameters. In B, parameter synthesis through binary search implicitly prioritizes

one parameter over others.

We compare the two methods using the Simuquest Enginuity high-fidelity Engine

model and the Automotive Transmission model. To enable the comparison of the two

methods, we have implemented the B method in S-TaLiRo. Note that the simulation

time is 60s. The experimental results are presented in Table 4.2. For the A method,

the number of simulations and robustness computations is predefined. On the other

hand, for the B method, these numbers vary following the reasons presented in the

previous paragraph. As a result, the difference in computation time between the two

methods is significant. Due to the significant differences between the two algorithms,

in terms of guarantees provided, it is not possible to compare the quality of the

solutions. While the mined parameters with method A guarantee falsification of the

specification, the mined parameters with method B do not.

The results for the AT model can be reproduced by running the experiments in

S-TaLiRo version 1.6 [126], with Multi Parametric Toolbox (MPT) version 3.0.

101

4.9 Conclusion

An important stage in Model Based Development (MBD) of software for CPS is

the formalization of system requirements. We advocate that Metric Temporal Logic

(MTL) is an excellent candidate for formalizing interesting design requirements. In

this thesis, we have presented a solution on how we can explore system properties

using Parametric MTL (PMTL) [21]. Based on the notion of robustness of MTL [68],

we have converted the parameter mining problem into an optimization problem which

we approximate using S-TaLiRo [19, 126]. We have presented a method for mining

multiple parameters as long as the robustness function has the same monotonicity

with respect to all the parameters. We demonstrated that our method can provide

interesting insights to the powertrain challenge problem [40]. Finally, we utilized the

method on an industrial size engine model and examples from related works.

4.10 Future Work

There are two possible extensions of this work. One, as the number of parame-

ters in parametric MTL formulas increases, it becomes more and more challenging to

visualize the parameter falsification domain. With the current implementation, our

framework can visualize up to three parameters. It would be interesting to develop

visualization methods for the Pareto front with more than three parameters. Meth-

ods that enable the practitioner to explore the falsification domain and inspect the

relationship between parameters. Two, the framework presented here enables param-

eter mining for specifications that satisfy the monotonicity property with respect to

the robustness of the parametric MTL formula. An interesting problem would be to

consider cases of parameter mining for mixed monotonicity specifications.

102

Chapter 5

PRACTICAL ALGORITHMS FOR CONFORMANCE TESTING

5.1 Introduction

One of the benefits of Model-Based Design is that it enables the iterative de-

velopment of CPS. During this process, a series of models and implementations are

developed, with varying fidelity, for the same underlying CPS. One of the problems

that arises, is to quantify how “close” two systems are to each other. We refer to this

as the conformance problem.

Due to the non-linear, hybrid nature of these systems, in general, it is not pos-

sible to certify that two systems are conformant to each other. We can only detect

non-conformance. In this work, we review and adopt the semi-formal approach for

conformance testing of CPS presented in [3]. We propose an automated black/grey

box conformance testing framework. In this framework, we simulate two systems

with the same input signal and then evaluate the output signals with our notion of

conformance. A stochastic optimizer is then utilized to select the next input signal.

Our method returns the most non-conformant behavior found after running a prede-

termined number of tests. Our framework is based on a notion of closeness between

signals that encapsulates both spatial and temporal differences. Spatial difference by

itself is not sufficient since in many cases, two system trajectories, due to factors such

as jitter, may be slightly shifted. This shift is generally acceptable in model based

design and therefore we do not wish to classify this as non-conformant behavior.

Finally, we introduce and integrate code coverage metrics for conformance testing

103

of Cyber-Physical Systems. By doing so, we can ensure that particular locations of

the control logic have been covered in the testing process.

We illustrate our methods with an industrial scale high-fidelity engine model from

Toyota.

In this chapter:

• We review and adopt the notion of conformance introduced in [3].

• We introduce code coverage methods for conformance testing of CPS.

• We illustrate our work on an industrial scale high-fidelity engine model from

Toyota.

5.2 Problem Formulation

In the conformance testing framework, we consider two systems: Σ1 for the Model

and Σ2 for the implementation. Utilizing the notation from Section 2.1, both systems

can be viewed as functions:

∆Σ1 : X0 ×U→ Y N × T

∆Σ2 : X0 ×U→ Y N × T

The systems take as an imput the same initial conditions x0 ∈ X0 and input

signals u ∈ U to produce:

Output signal y1 : N → Y and timing function τ1 : N → R+ for ∆Σ1 .

Output signal y2 : N → Y and timing function τ2 : N → R+ for ∆Σ2 .

We recall that µ1 = (y1, τ1) and µ2 = (y2, τ2) are referred to as timed state se-

quences (TSS). TSS is a widely accepted model for reasoning about real-time systems

[11]. A timed state sequence can represent a computer-simulated trajectory of a CPS

104

or the sampling process that takes place when we digitally monitor physical systems.

We remark that a timed state sequence can represent both the internal state of the

software/hardware (usually through an abstraction) and the state of the physical

system.

Our high level goal is to determine whether there exists a pair of (initial conditions,

input signal) that cause the model and its implementation to produce significantly

different outputs; and if such a pair exists, to find it and present it to the user.

We define conformance over two trajectories as follows.

Definition 5.2.1 ((δ, ε)− closeness [3]) Two timed state sequences, or trajecto-

ries, µ1 = (y1, τ1) and µ2 = (y2, τ2) are (δ, ε)− close if

(a) for all i ∈ N , there exists k ∈ N where

|τ1(i)− τ2(k)| < δ and ‖y1(i)− y2(k)‖ < ε

(b) for all i ∈ N , there exists k ∈ N where

|τ2(i)− τ1(k)| < δ and ‖y2(i)− y1(k)‖ < ε

If these conditions are met we say that µ1 and µ2 are conformant with degree (δ, ε).

The definition says that within any time window of size 2δ, there must be a time

when the trajectories are within ε or less of each other. Allowing some ‘wiggle room’

in both time and space is important for conformance testing: when implementing

a Model, there are inevitable errors. These are due to differences in computation

precision, clock drift in the implementation, the use of inexpensive components, un-

modeled environmental phenomena, etc, leading to the Implementation’s output to

differ in value from the Model’s output, and to have different timing characteristics.

105

Problem 5.2.1 (System Conformance) Given two Systems Σ1 and Σ2, for every

µ1 ∈ L(Σ1) and µ2 ∈ L(Σ2), show that µ1 and µ2 are conformant with degree (δ, ε),

where

L(Σi) = {(yi, τi) | ∃x0 ∈ X0 .∃u ∈ U . (yi, τi) = ∆Σi(x0, u)}.

In many cases, the implementation of the model is given as a black-box or gray-

box where the internals of the model are hidden or partially known, respectively. In

this case, we can only analyze the system by observing the input-output behavior.

For gray-box systems, we might have partial information such as a subset of states

of the system or the current locations or modes of the underlying control logic of the

system. Therefore, in general, Prob. 5.2.2 does not lend itself to complete analytical

techniques. However, since we can detect non-conformant behavior, we can pose this

problem as a falsification problem. Namely, we can convert this problem to a testing

problem where we search for non-conformant behavior.

Problem 5.2.2 ((δ, ε) - Conformance Falsification) Given two Systems Σ1 and

Σ2, find (x0, u) s.t. the resulting traces µ1 = ∆Σ1(x0, u) and µ2 = ∆Σ2(x0, u) are

non-conformant with degree (δ, ε).

An overview of the solution is presented in Fig. 5.1. Given two systems, the

sampler produces a point x0 from the set of initial conditions, and an input signal u.

The initial conditions and input signals are passed to the system simulator for both

systems which returns two trajectories. The trajectories are then analyzed and a

conformance degree is returned. Here, either δ or ε are fixed a priori. The conformance

degree is used by the stochastic sampler to decide on next initial conditions and inputs.

The process terminates once a maximum number of tests is reached. The method

returns non-conformant outputs (if they are found) along with the corresponding

initial conditions and input signals.

106

System Σ1 Conformance

Degree

Computation

Stochastic

Optimization

output signal 𝒚𝟏

(𝛿𝑖 , 𝜀𝑖)

next initial

conditions 𝑥0
𝑖 &

input signal 𝑢𝑖 initial conditions x0

input signal u

worst 𝛿, 𝜀 =
(max

𝑖
(𝛿), 𝜀) if 𝜀 is fixed

(𝛿,max
𝑖
(𝜀)) if 𝛿 is fixed

System Σ2 output signal 𝒚𝟐

test 𝑖

Figure 5.1: Overview of the solution to Prob. 5.2.2: the conformance falsification

problem for CPS.

5.3 Code Coverage for CPS

In software testing, many techniques and standards have been developed to ensure

that the developed software operates as intended. Techniques ranging from static/dy-

namic analysis [60] and fault injection [113] to mutation testing [18] and code coverage

[140]. In the following we investigate code coverage techniques for conformance falsi-

fication of CPS.

Code coverage is of particular importance when dealing with CPS. In order to

ensure that the testing process includes parts of the system that are rarely visit-

ed/tested. In closed-loop testing, a CPS is composed of a controller and a plant,

as illustrated in Fig. 5.2. The physical representation of the system that needs to

be controlled is called the plant. The controller processes signal data and generates

an actuation signal using a control law that has a specific objective. From the test-

107

ing perspective, the control logic can be instrumented automatically [57] and we can

conduct coverage over the states of the resulting finite state machine.

output signal 𝒚

Controller Plant

sensor signal

actuator signal

Closed-Loop CPS

initial

conditions x0

input signal u

disturbance

Automatic

Instrumentation

𝑙1 𝑙3

𝑙2

𝑙4

𝑙5

a

b

c

d

e

f

n

g

M1

M2

Mn

.

.

.

Figure 5.2: Typical closed-loop cyber-physical system. The discrete logic of the

controller code is automatically instrumented and modeled using Extended Finite

State Machines (EFSM) [10]. Namely, for each conditional statement code block in

the controller code, an EFSM is generated.

Example 5.3.1 (Model Instrumentation) We illustrate the system instrumenta-

tion process with our running example from Section 2.6.3. Given a simulink model

of the hybrid nonlinear system, by analysing the function block of the controller code,

we are able to extract the control logic of the controller. In addition, we modify the

system so that we are able to observe in which location the system is in when analyzing

the output trajectories. This process is illustrated in Fig. 5.3.

108

(a)

𝑙2𝑙1

𝑥0 ∈ 𝑋𝑈
𝑥0 ∈ 𝑋𝑈𝑥0 ∉ 𝑋𝑈

(c)

(b)

𝑙1

𝑙2

𝑙1

𝑙2

Figure 5.3: Model instrumentation of the hybrid nonlinear system (HS) presented in

Section 2.6.3. (a) Simulink model of the HS system. (b) Controller code of the HS

simulink model inside the function block. (c) Automatically extracted control logic

from the controller code.

In a typical V process in MBD, as presented in Fig. 1.2, a model is developed

iteratively. In this iterative process, depending on the development stage, various

conformance testing scenarios may be encountered. In Fig. 5.4, we list the three

possible scenarios. In the following, we will provide a conformance testing solution

for each. First, we will consider the case where the controller is the same in both the

model and the implementation but the plant is different. After, we will consider the

case when the plant is the same but the controller is different.

109

C P1

Σ1

C P2

Σ2

C1 P

Σ1

C2 P

Σ2

C1 P1

Σ1

C2 P2

Σ2

(a) (b) (c)

Figure 5.4: Conformance testing scenarios in the V process in MBD. (a) Two sys-

tems with the same controller and different plant. (b) Two systems with different

controllers and same plant. (c) Two systems with different controllers and different

plants.

5.4 Controller Coverage with Different Plants

In the right hand side of the V process, presented in Fig. 1.2, the model gets

developed and tested through Model in the loop (MIL), Software in loop (SIL), Pro-

cessor in loop (PIL), Hardware in loop (HIL) and implementation stages. Typically,

the main components that change in this process are the plant and the controller of

the model: from the most abstract (Model), to the most realistic (Implementation).

In this section, we consider the case where the controller remains the same in both

the model and implementation but the plant is different.

First, we extract the controller code through an instrumentation process to obtain

the structure of the control logic of the controller but not the actual numerical com-

putations. In this process, for every conditional statement code block, an Extended

Finite State Machine (EFSM) Mi is generated. Depending on the size of the result-

ing machines, the practitioner may desire to test all or some specific combinations of

110

locations for each Mi. In most practical applications, the number of machines and

locations is large and therefore testing all the combinations is not a feasible task. We

discuss this case further in Section 5.6. In the rest of this section, we assume that

the practitioner has a predetermined combination of locations that they would like

to cover.

For a particular combination of locations, the problem is posed as an optimization

problem. We modify the solution presented in Fig. 5.1 by changing the cost function

such that the system is driven towards the target locations. We accomplish this by

utilizing the hybrid distance metric introduced in [2]. We refer the reader to [2] for

the technical details. The intuition behind the metric is as follows. When the current

location is different from the target location, then the distance is the distance to the

closest guard that will enable the transition to the next control location that reduces

the path distance. When the system is in the target locations, the cost function is set

to the (δ, ε) conformance metric. In this way, not only do we attempt to reach the

target locations, but also attempt to find the most non-conformant behavior there.

5.5 Coverage with Different Controllers

Throughout the entire V-process of MBD, it is often the case that the controller

is either modified, abstracted and refined depending on the application. When we

encounter this case, we would like to ensure conformance between the previous and the

new version of the controller. To achieve this, coverage of both controller locations is

necessary. Given system Σ1 with controller C1 and Σ2 with controller C2, we extract

the controller logic through an automatic process A(C1) = M and A(C2) = N .

Next, we conduct conformance testing with coverage over the product automaton

P = M × N which contains the states of both controller locations. The search

process follows similarly as in Sect 5.4.

111

5.6 Covering Arrays for Code Coverage of CPS

In many cases, the number of conditional statements inside the controller code is

very large, and generating system simulations to cover all the possible interactions

is not feasible. In this section, we propose the use of covering arrays [43] to enable

conformance testing of a subset of interactions for the conditional statements reached

in the testing process. In particular, we will utilize methods from the Covering Array

literature, to improve on existing conformance testing methods. Covering arrays

have been successfully utilized in a variety of applications such as blackbox testing

of hardware systems, learning an unknown Boolean function, sequence alignment of

DNA, compressing inconsistent data, etc.

For conformance testing, consider the following example. A controller has 4 con-

ditional statement blocks where M1 has 15 locations, M2 has 10 locations, M3 has 8

locations and M4 has 25 locations. To check all interactions of the locations we would

have to attempt to reach 15× 10× 8× 25 = 30, 000 combinations of locations with a

predetermined number of tests each. This approach becomes infeasible very quickly.

However, we can utilize covering arrays to drastically decrease the number of interac-

tions of locations. As a trade-off, we do not test for all interactions of locations but

cover n-interactions. For example, a 3-interaction covering array reduces the number

of interactions of locations to 3750, while a 2-interaction covering array reduces it to

376 location interactions. Furthermore, there is research that shows that a significant

number of bugs in software can be found within n-interactions [105]. With covering

arrays, the number of sequences of locations needed for coverage, for a fixed number

of interactions, grows logarithmically in the number of parameters [105].

Covering arrays have been studied extensively over the last 40 years. Researchers

have been primarily focused on the problem of determining the minimum size of

112

covering arrays. For an overview, see [75]. In general, there has been significant

progress in determining upper bounds for the minimum size of the covering arrays.

Furthermore, many algorithms [69, 34, 43] and tools [42] have been developed for

the construction of covering arrays. In our framework, we utilize the AETG covering

array generation system [42].

With covering arrays, we can define seeds, or combinations of locations that must

be covered by the covering array. We can define avoids, or interactions that do not

need to be covered. We can define constraints, which are interactions that should

not be covered. We can also define the strength of some factors over others. All this

allows for a very flexible framework when conducting conformance testing.

5.7 Case Study: Toyota Engine Controller

We consider two models of varying fidelity of an internal combustion engine. The

models are academic, but of industrial complexity, and are provided by the Toyota

Technical Center 1 . The first model Σ1 is a high-fidelity engine plant and controller

while the second one Σ2 is a simplified, polynomial approximation of the plant model

in Σ1. In this case, with conformance testing, we aim to explore how close the two

models are and whether we can utilize Σ2 for model predictive control [38, 39, 85, 86].

Both Σ1 and Σ2 are modeled in Matlab/Simulink. Σ1 has 1878 blocks, including

10 integrator blocks, 47 lookup tables, 19 saturation blocks, 27 switch blocks, and

44 subsystem blocks. The model of the plant has 11 continuous and 68 discrete

states. The controller is defined in a function block and contains ≈ 500 lines of code

with multiple if-else conditional statements. Model Σ2 has 1858 blocks, including 47

lookup tables, 17 saturation blocks, 27 switch blocks and 49 subsystem blocks with

1We note that due to confidentiality agreements, we have removed the unit measurements of the
y-axes from the figures presented in this section.

113

no continuous states and 60 discrete states. Both Σ1 and Σ2 have two inputs and

one output each. The inputs are the Fuel Inject Rate and the Engine Speed (Ne).

The output is the Pressure of Intake Manifold (Pin). In the following, we run several

experiments with different optimization functions. We also provide partial coverage

of the input space as well as branch coverage for the controller code.

5.7.1 Simulated Annealing

The search space over system inputs is defined over control points which are

interpolated to generate an input signal as defined in Section 2.5. Here, both inputs

have 10 control points. The search space also includes timing of the control points.

Since the initial and terminal timing control points are fixed at the start and end of

the simulation, respectively, for each input, we have an additional 8 search variables.

The signals are interpolated through a piecewise constant interpolation function. An

example input signal is presented in Fig. 5.5 (a) (Left). In total, we have 36 search

variables. The stochastic optimizer utilized is a simulated annealing algorithm [2].

After 1000 tests, we found the system inputs that generate the outputs in Fig. 5.5.

In the left figure, the resulting system inputs are presented. Figure 5.5 (a) (Middle)

shows the system outputs, where the red out is from the complex model Σ1, and the

blue line is from the simplified model Σ2. The figure on the right is the Pareto front

over (δ, ε) which illustrates the ε difference over the δ range. The ε value at δ = 0

represents the instantaneous difference between the outputs of the two models at the

same time t, while the ε value at δ = 0.2 represents the largest difference between the

outputs of the two models while comparing the values of the two signals in a moving

window of width 0.2s. Note that the Pareto Front is over 1000 tests and is therefore

an under-approximation of the true Pareto Front over all system behaviors. We can

guarantee that (δ, ε) is at least as large as shown in Fig. 5.5 (a) (Right).

114

0 10 20 30 40 50 60 70 80 90 100

Fuel

0 10 20 30 40 50 60 70 80 90 100

t

Ne

0 10 20 30 40 50 60 70 80 90 100

t

PIn

Complex

Simple

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Tau

E
p

s
ilo

n

Pareto Front

(a) Simulated Annealing

0 10 20 30 40 50 60 70 80 90 100

Fuel

0 10 20 30 40 50 60 70 80 90 100

t

Ne

0 10 20 30 40 50 60 70 80 90 100

t

PIn

Complex

Simple

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Tau

E
p
s
ilo

n

Pareto Front

(b) Grid Search

0 10 20 30 40 50 60 70 80 90 100

Fuel

0 10 20 30 40 50 60 70 80 90 100

t

Ne

0 10 20 30 40 50 60 70 80 90 100

t

PIn

Complex

Simple

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Tau

E
p
s
ilo

n

Pareto Front

(c) Controller Branch Coverage

Figure 5.5: Experimental results for various conformance testing methods. Left:

System inputs for the Fuel Inject Rate and the Engine Speed (Ne). Middle: System

output for the Pressure of Intake Manifold Pin. Right: Pareto front over all tested

system behaviors that illustrates the ε difference over the δ range.

115

5.7.2 Grid Search

One of the goals in the conformance testing process is to provide a level of input

search space coverage. To do so, we developed a grid search algorithm which divides

the input search space in a grid. Formally, search is conducted over the following

set S = {(x, y) : x ∈ [min(U1) : range(U1)
g−1

: max(U1)] and y ∈ [min(U2) : range(U2)
g−1

:

max(U2)]}, where U1, U2 are input signals for inputs 1 and 2, respectively. Here, g

is the granularity of the grid. The results of the grid search algorithm are presented

in Fig. 5.5 (b). The middle figure shows highly non-conformant behavior between

Σ1 and Σ2, indicating a possible singularity in either model at this particular input.

Here, since the maximal difference between the two trajectories is constant over a

period of 2× δ, the Pareto Front on the right figure is flat.

In the future, we plan to implement a grid search algorithm which includes several

grids with respect to time and the input signals are interpolated linearly between

them. This way, we can also study switching behaviors of the system.

5.7.3 Controller Branch Coverage

The next step in the analysis is to conduct conformance testing while making sure

that we have controller branch coverage. We will consider three if-else blocks to be

of particular importance. Namely M1 with 12 branches, M2 with 2 branches, and

M3 with 4 branches. These if-else blocks are instrumented automatically from the

Simulink model. The instrumentation process extracts the branch information from

the Embedded Matlab code function block and passes it to S-TaLiRo for confor-

mance testing. We follow the approach presented in Section 5.4 which is related to

the testing approach in [57].

After running our algorithm, we found non-conformant behavior in locations

116

(6, 1, 4) for M1, M2, and M3. The results are presented in Fig. 5.5 (c). The target

locations (6, 1, 4) were reached after 803 tests. After reaching the target locations, the

stochastic optimizer was focused on maximizing the (δ, ε) metric between trajectories.

Following our testing results, Ken Butts, an Executive Engineer from the Power-

train Control Department at Toyota Technical Center provided the following state-

ment:

‘ ‘Their tool has pointed out where the high-fidelity model is fragile and producing

erroneous results. It is good to know that the polynomial model performs well at these

cases.”

5.8 Related Works

Conformance notions have been studied in the past. Tretmans [141] defined an

Input-Output conformance (ioco) notion for discrete labeled transition systems. This

notion is defined as a relationship where the implementation does not generate an

output that is not producible by the specification. Also, the implementation always

produces an output when it is required by the specification. Later, Van Osch [117]

extended ioco to hybrid transition systems (HTS) by incorporating continuous-time

inputs.

In [145], the authors extend the work by [141] where the implementation is a black

box that generates trajectories. In this framework, the specification is represented

as a timed automaton. Here, every trajectory in the language of the implementation

needs to satisfy the timed automaton representing the specification.

In the work by Brandl et al. [29] the authors present a method for conformance

checking through qualitative reasoning techniques. The method utilzes mutation-

based test case generation on action systems for ioco [141] conformance checking.

In [49], the authors propose a notion of conformance based on the Skorokhod met-

117

ric. This notion captures both timing and spacial differences between trajectories and

supports transference of properties in the development process. However, the physical

interpretation and computation of the Skorokhod distance is not as straightforward

as for the (τ, ε) metric [3].

In [94], the authors provide an overview of confrmance testing methods for hybrid

systems. They compare different notions of robustness for conformance testing and

they list current challenges in the area.

5.9 Conclusions and Future Work

In this chapter, we presented a conformance testing framework to test how “close”

two systems are. We presented a black/gray box framework that includes controller

code coverage methods for improved testing. Next, we discussed the use of cover-

ing array techniques to dramatically reduce the number of tests necessary to test

n-interactions of the branching conditions in the controller code. Finally, we demon-

strated our methods with prototype high-fidelity models from Toyota.

In the future, we plan to incorporate a learning algorithm to obtain the regular

language of the transitions between location n-tuples and estimate the accompanying

probabilities for non-conformant behavior. This could possibly be represented as

a Markov Decision Process. This would make it easy to observe “problematic” or

non-conformant location changes and facilitate the debugging process.

118

BIBLIOGRAPHY

[1] H. Abbas and G. Fainekos. Linear hybrid system falsification through local
search. In Automated Technology for Verification and Analysis, volume 6996 of
LNCS, pages 503–510. Springer, 2011.

[2] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivancic, and A. Gupta.
Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans-
actions on Embedded Computing Systems, 12(s2), May 2013.

[3] H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski, and K. Ueda.
Conformance testing as falsification for cyber-physical systems. Technical Re-
port arXiv:1401.5200, January 2014.

[4] H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski, and K. Ueda.
Wip abstract: Conformance testing as falsification for cyber-physical systems.
In Cyber-Physical Systems (ICCPS), 2014 ACM/IEEE International Confer-
ence on, pages 211–211. IEEE, 2014.

[5] H. Abbas, B. Hoxha, G. Fainekos, and K. Ueda. Robustness-guided temporal
logic testing and verification for stochastic cyber-physical systems. In Cyber
Technology in Automation, Control, and Intelligent Systems (CYBER), 2014
IEEE 4th Annual International Conference on, pages 1–6. IEEE, 2014.

[6] E. Ábrahám-Mumm, U. Hannemann, and M. Steffen. Verification of hybrid
systems: Formalization and proof rules in pvs. In Engineering of Complex
Computer Systems, 2001. Proceedings. Seventh IEEE International Conference
on, pages 48–57. IEEE, 2001.

[7] T. Akazaki and I. Hasuo. Time robustness in mtl and expressivity in hybrid sys-
tem falsification. In International Conference on Computer Aided Verification,
pages 356–374. Springer, 2015.

[8] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual timed event
scenarios. In Proceedings of the 26th Int. Conference on Software Engineering,
pages 168–177. IEEE Computer Society, 2004.

[9] M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid
systems using a combination of zonotopes and polytopes. Nonlinear Analysis:
Hybrid Systems, 4(2):233 – 249, 2010.

[10] R. Alur. Principles of cyber-physical systems. MIT Press, 2015.

[11] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In J. Mitchell, editor, 5th Annual IEEE Symp. on Logic in Computer Science
(LICS), pages 414–425. IEEE Computer Society Press, June 1990.

[12] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

119

[13] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems.
Springer, 1993.

[14] R. Alur and D. L. Dill. Theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[15] R. Alur, K. Etessami, S. La Torre, and D. Peled. Parametric temporal logic for
model measuring. ACM Trans. Comput. Logic, 2:388–407, July 2001.

[16] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43:116–146, 1996.

[17] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing,
pages 592–601. ACM, 1993.

[18] P. Ammann and J. Offutt. Introduction to software testing. Cambridge Univer-
sity Press, 2016.

[19] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-
taliro: A tool for temporal logic falsification for hybrid systems. In Tools and
algorithms for the construction and analysis of systems, volume 6605 of LNCS,
pages 254–257. Springer, 2011.

[20] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability
analysis of piecewise linear dynamical systems. In Hybrid Systems: Computation
and Control, volume 1790 of LNCS, pages 21–31. Springer, 2000.

[21] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identification of
temporal properties. In Runtime Verification, volume 7186 of LNCS, pages
147–160. Springer, 2012.

[22] M. Autili, P. Inverardi, and P. Pelliccione. Graphical scenarios for specifying
temporal properties: an automated approach. Automated Software Engineering,
14(3):293–340, 2007.

[23] S. Bacherini, A. Fantechi, M. Tempestini, and N. Zingoni. A story about formal
methods adoption by a railway signaling manufacturer. In FM 2006: Formal
Methods, pages 179–189. Springer, 2006.

[24] C. Baier, J.-P. Katoen, et al. Principles of model checking, volume 26202649.
MIT press Cambridge, 2008.

[25] S. Bak, S. Bogomolov, and T. T. Johnson. Hyst: a source transformation
and translation tool for hybrid automaton models. In Proceedings of the 18th
International Conference on Hybrid Systems: Computation and Control, pages
128–133. ACM, 2015.

120

[26] N. M. Bardh Hoxha and G. Fainekos. Vispec : A graphical tool for elicita-
tion of mtl requirements. In Proceedings of the 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2015.

[27] A. Bhatia and E. Frazzoli. Incremental search methods for reachability anal-
ysis of continuous and hybrid systems. In Hybrid Systems: Computation and
Control, volume 2993 of LNCS, pages 142–156. Springer, 2004.

[28] L. Bozzelli and S. La Torre. Decision problems for lower/upper bound paramet-
ric timed automata. Formal Methods in System Design, 35(2):121–151, 2009.

[29] H. Brandl, M. Weiglhofer, and B. K. Aichernig. Automated conformance ver-
ification of hybrid systems. In Quality Software (QSIC), 10th International
Conference on, pages 3–12. IEEE, 2010.

[30] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund,
M. Lowry, C. Pasareanu, A. Venet, W. Visser, and R. Washington. Experi-
mental evaluation of verification and validation tools on martian rover software.
Formal Methods in System Design, 25(2-3):167–198, 2004.

[31] G. Bruns and P. Godefroid. Temporal logic query checking. In Proceedings of
the 16th Annual IEEE Symposium on Logic in Computer Science, pages 409 –
417. IEEE Computer Society, 2001.

[32] W. Chan. Temporal-logic queries. In Proceedings of the 12th International
Conference on Computer Aided Verification, volume 1855 of LNCS, pages 450–
463, London, UK, 2000. Springer.

[33] R. N. Charette. This car runs on code. IEEE spectrum, 46(3):3, 2009.

[34] M. Chateauneuf, C. J. Colbourn, and D. L. Kreher. Covering arrays of strength
three. Designs, Codes and Cryptography, 16(3):235–242, 1999.

[35] M. Chechik and A. Gurfinkel. Tlqsolver: A temporal logic query checker. In
Proceedings of the 15th International Conference on Computer Aided Verifica-
tion, volume 2725, pages 210–214. Springer, 2003.

[36] T. Chen, M. Diciolla, M. Z. Kwiatkowska, and A. Mereacre. A simulink hybrid
heart model for quantitative verification of cardiac pacemakers. In Proceed-
ings of the 16th international conference on Hybrid systems: computation and
control, pages 131–136. ACM, 2013.

[37] X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An analyzer for non-
linear hybrid systems. In Computer-Aided Verification (CAV), volume 8044 of
LNCS, pages 258–263. Springer-Verlag, 2013.

[38] R. Choroszucha, J. Sun, and K. Butts. Closed-loop model order reduction and
mpc for diesel engine airpath control. In American Control Conference (ACC),
2015, pages 3279–3284. IEEE, 2015.

121

[39] R. Choroszucha, J. Sun, and K. Butts. Nonlinear model order reduction for
predictive control of the diesel engine airpath. In American Control Conference
(ACC), 2016, pages 5081–5086. IEEE, 2016.

[40] A. Chutinan and K. R. Butts. Dynamic analysis of hybrid system models for
design validation. Technical report, Ford Motor Company, 2002.

[41] A. Chutinan and B. Krogh. Verification of polyhedral invariant hybrid automata
using polygonal flow pipe approximations. In Hybrid Systems: Computation and
Control, volume 1569 of LNCS, pages 76–90. Springer, 1999.

[42] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The aetg system:
An approach to testing based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997.

[43] C. J. Colbourn and J. H. Dinitz. Handbook of combinatorial designs. CRC
press, 2006.

[44] M. Conrad and I. Fey. Testing automotive control software. In Automotive
Embedded Systems Handbook. CRC Press, 2008.

[45] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, R. Bby,
and H. Zheng. Bandera: Extracting finite-state models from java source code. In
Software Engineering, 2000. Proceedings of the 2000 International Conference
on, pages 439–448. IEEE, 2000.

[46] T. Dang. Verification and Synthesis of Hybrid Systems. PhD thesis, INPG,
2000.

[47] K. Deb. Multi-objective optimization using evolutionary algorithms, volume 16.
John Wiley & Sons, 2001.

[48] Y. Deng, A. Rajhans, and A. A. Julius. Strong: A trajectory-based verification
toolbox for hybrid systems. In Quantitative Evaluation of Systems, pages 165–
168. Springer, 2013.

[49] J. V. Deshmukh, R. Majumdar, and V. S. Prabhu. Quantifying conformance
using the skorokhod metric. In International Conference on Computer Aided
Verification, pages 234–250. Springer, 2015.

[50] A. Deshpande, A. Gollu, and P. Varaiya. Shift: A formalism and a programming
language for dynamic networks of hybrid automata. In P. J. Antsaklis, W. Kohn,
A. Nerode, and S. Sastry, editors, Hybrid Systems, volume 1273 of LNCS, pages
113–133. Springer, 1996.

[51] B. Di Giampaolo, S. La Torre, and M. Napoli. Parametric metric interval tem-
poral logic. In A.-H. Dediu, H. Fernau, and C. Martin-Vide, editors, Language
and Automata Theory and Applications, volume 6031 of LNCS, pages 249–260.
Springer, 2010.

122

[52] B. Di Giampaolo, S. La Torre, and M. Napoli. Parametric metric interval
temporal logic. In Language and Automata Theory and Applications, pages
249–260. Springer, 2010.

[53] A. Dokhanchi, B. Hoxha, and G. Fainekos. On-line monitoring for temporal
logic robustness. In Runtime Verification, volume 8734 of LNCS, pages 231–
246. Springer, 2014.

[54] A. Dokhanchi, B. Hoxha, and G. Fainekos. Metric interval temporal logic speci-
fication elicitation and debugging. In Formal Methods and Models for Codesign
(MEMOCODE), 2015 ACM/IEEE International Conference on, pages 70–79.
IEEE, 2015.

[55] A. Dokhanchi, B. Hoxha, and G. Fainekos. Formal requirement debug-
ging for testing and verification of cyber-physical systems. arXiv preprint
arXiv:1607.02549, 2016.

[56] A. Dokhanchi, B. Hoxha, C. E. Tuncali, and G. Fainekos. An efficient algorithm
for monitoring practical tptl specifications. In Formal Methods and Models for
System Design (MEMOCODE), 2016 ACM/IEEE International Conference on,
pages 184–193. IEEE, 2016.

[57] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G. Fainekos.
Requirements driven falsification with coverage metrics. In Proceedings of the
12th International Conference on Embedded Software, pages 31–40. IEEE Press,
2015.

[58] A. Donze. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In Computer Aided Verification, volume 6174 of LNCS, pages 167–170.
Springer, 2010.

[59] A. Donze and O. Maler. Robust satisfaction of temporal logic over real-valued
signals. In Formal Modelling and Analysis of Timed Systems, volume 6246 of
LNCS. Springer, 2010.

[60] V. D’silva, D. Kroening, and G. Weissenbacher. A survey of automated tech-
niques for formal software verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 27(7):1165–1178, 2008.

[61] P. S. Duggirala, S. Mitra, and M. Viswanathan. Verification of annotated mod-
els from executions. In Proc. of the Eleventh ACM Int. Conf. on Embedded
Software, page 26. IEEE Press, 2013.

[62] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2e2: A verification
tool for stateflow models. In TACAS, pages 68–82, 2015.

[63] D. L. Dvorak and M. Lyu. Nasa study on flight software complexity. NASA
office of chief engineer, 2009.

123

[64] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and
Y. Xiong. Taming heterogeneity - the ptolemy approach. Proceedings of the
IEEE, 91(1):127–144, Jan. 2003.

[65] F. Fages and A. Rizk. On temporal logic constraint solving for analyzing nu-
merical data time series. Theor. Comput. Sci., 408(1):55–65, 2008.

[66] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification of
automotive control applications using s-taliro. In Proceedings of the American
Control Conference, 2012.

[67] G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications. In
Formal Approaches to Testing and Runtime Verification, volume 4262 of LNCS,
pages 178–192. Springer, 2006.

[68] G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42):4262–4291,
2009.

[69] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn. Refining the in-
parameter-order strategy for constructing covering arrays. Journal of Research
of the National Institute of Standards and Technology, 113(5):287, 2008.

[70] G. Frehse, C. L. Guernic, A. Donz, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid
systems. In Proceedings of the 23d CAV, 2011.

[71] S. Gao. Computable analysis, decision procedures, and hybrid automata: a new
framework for the formal verification of cyber-physical systems. PhD thesis,
PhD thesis, Carnegie Mellon University, 2012.

[72] S. Gao, S. Kong, and E. M. Clarke. dreal: An smt solver for nonlinear theories
over the reals. In International Conference on Automated Deduction, pages
208–214. Springer, 2013.

[73] A. Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid
Systems: Computation and Control, volume 3414 of LNCS, pages 291–305,
2005.

[74] A. Gurfinkel, B. Devereux, and M. Chechik. Model exploration with temporal
logic query checking. SIGSOFT Softw. Eng. Notes, 27(6):139–148, 2002.

[75] A. Hartman. Software and hardware testing using combinatorial covering suites.
In Graph theory, combinatorics and algorithms, pages 237–266. Springer, 2005.

[76] T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th
Annual Symposium on Logic in Computer Science, pages 278–292. IEEE Com-
puter Society Press, 1996.

124

[77] M. Hinchey, C. Wang, and M. Josh. Formal methods for system/software engi-
neering: Nasa & army experiences. https://www.nasa.gov/sites/default/
files/585641main_FormalMethodsforSystemSoftwareEngineering.pdf.
Accessed: 2017-07-04.

[78] G. J. Holzmann. The model checker spin. IEEE Transactions on software
engineering, (5):279–295, 1997.

[79] G. J. Holzmann. The logic of bugs. In Proc. of the 10th ACM SIGSOFT symp.
on Foundations of soft. eng., pages 81–87. ACM, 2002.

[80] B. Hoxha, H. Abbas, and G. Fainekos. Benchmarks for temporal logic re-
quirements for automotive systems. In Workshop on Applied Verification for
Continuous and Hybrid Systems, 2014.

[81] B. Hoxha, H. Abbas, and G. Fainekos. Using s-taliro on industrial size automo-
tive models. Proc. of Applied Verification for Continuous and Hybrid Systems,
2014.

[82] B. Hoxha, H. Bach, H. Abbas, A. Dokhanchi, Y. Kobayashi, and G. Fainekos.
Towards formal specification visualization for testing and monitoring of cyber-
physical systems. In Int. Workshop on Design and Implementation of Formal
Tools and Systems. October 2014.

[83] B. Hoxha, A. Dokhanchi, and G. Fainekos. Mining parametric temporal logic
properties in model-based design for cyber-physical systems. International Jour-
nal on Software Tools for Technology Transfer, pages 1–15, 2017.

[84] B. Hoxha and G. Fainekos. Pareto front exploration for parametric temporal
logic specifications of cyber-physical systems. In Workshop on Monitoring and
Testing of Cyber-Physical Systems, 2016.

[85] M. Huang, H. Nakada, S. Polavarapu, K. Butts, and I. Kolmanovsky. Rate-
based model predictive control of diesel engines. In 7th IFAC Symposium on
Advances in Automotive Control, pages 177 – 182, 2013.

[86] M. Huang, H. Nakada, S. Polavarapu, R. Choroszucha, K. Butts, and I. Kol-
manovsky. Towards combining nonlinear and predictive control of diesel engines.
In American Control Conference (ACC), 2013, pages 2846–2853. IEEE, 2013.

[87] D. Isbell, M. Hardin, and J. Underwood. Mars climate orbiter team finds likely
cause of loss. NASA news release, 1999.

[88] ISO/IEC/IEEE 29148:2011(E). International Standard - Systems and software
engineering - Life cycle processes - Requirements engineering. pages 1–94, Dec
2011.

[89] J.-B. Jeannin, K. Ghorbal, Y. Kouskoulas, R. Gardner, A. Schmidt, E. Za-
wadzki, and A. Platzer. A formally verified hybrid system for the next-
generation airborne collision avoidance system. In TACAS, volume 9035, pages
21–36, 2015.

125

https://www.nasa.gov/sites/default/files/585641main_FormalMethodsforSystemSoftwareEngineering.pdf
https://www.nasa.gov/sites/default/files/585641main_FormalMethodsforSystemSoftwareEngineering.pdf

[90] Z. Jiang, M. Pajic, and R. Mangharam. Cyber-physical modeling of implantable
cardiac medical devices. Proceedings of the IEEE, 100(1):122–137, 2012.

[91] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. Mining requirements from
closed-loop control models. In Proceedings of the 16th international conference
on Hybrid systems: computation and control, pages 43–52. ACM, 2013.

[92] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts. Simulation-guided ap-
proaches for verification of automotive powertrain control systems. In American
Control Conference (ACC), 2015, pages 4086–4095. IEEE, 2015.

[93] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts. Simulation-based
approaches for verification of embedded control systems: An overview of tra-
ditional and advanced modeling, testing, and verification techniques. IEEE
Control Systems, 36(6):45–64, 2016.

[94] N. Khakpour and M. R. Mousavi. Notions of conformance testing for cyber-
physical systems: Overview and roadmap. In LIPIcs-Leibniz International Pro-
ceedings in Informatics, volume 42. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2015.

[95] E. S. Kim, M. Arcak, and S. A. Seshia. Directed specifications and assumption
mining for monotone dynamical systems. In Proceedings of the 19th Interna-
tional Conference on Hybrid Systems: Computation and Control, pages 21–30.
ACM, 2016.

[96] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. sel4: formal verification
of an operating-system kernel. Communications of the ACM, 53(6):107–115,
2010.

[97] S. A. Klugman, H. H. Panjer, and G. E. Willmot. Loss models: from data to
decisions, volume 715. John Wiley & Sons, 2012.

[98] S. Kong, S. Gao, W. Chen, and E. M. Clarke. dreach: δ-reachability analysis
for hybrid systems. In TACAS, volume 15, pages 200–205, 2015.

[99] Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and C. Belta. Temporal
logic inference for classification and prediction from data. In Proceedings of
the 17th international conference on Hybrid systems: computation and control,
pages 273–282. ACM, 2014.

[100] P. Koopman. Better Embedded System Software. Drumnadrochit Education
LLC, 2010.

[101] Y. Kouskoulas, D. W. Renshaw, A. Platzer, and P. Kazanzides. Certifying
the safe design of a virtual fixture control algorithm for a surgical robot. In
C. Belta and F. Ivancic, editors, Hybrid Systems: Computation and Control
(part of CPS Week 2013), HSCC’13, Philadelphia, PA, USA, April 8-13, 2013,
pages 263–272. ACM, 2013.

126

[102] R. Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255–299, 1990.

[103] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal logic
for scenario-based specifications. In Tools and Alg. for the Construction and
Analysis of Systems, pages 445–460. Springer, 2005.

[104] D. R. Kuhn and R. Chandramouli. Cost effective uses of formal methods in ver-
ification and validation. In Foundations Verification and Validation Workshop,
2002.

[105] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions and
implications for software testing. IEEE transactions on software engineering,
30(6):418–421, 2004.

[106] J. Legriel, C. Le Guernic, S. Cotton, and O. Maler. Approximating the pareto
front of multi-criteria optimization problems. In TACAS, pages 69–83. Springer,
2010.

[107] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993.

[108] C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit. Provably
correct reactive control from natural language. Autonomous Robots, 38(1):89–
105, 2015.

[109] J.-L. Lions, L. Lbeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat, S. Levedag,
L. Mazzini, D. Merle, and C. O’Halloran. Ariane 5, flight 501 failure, report by
the inquiry board. Technical report, CNES, July 1996.

[110] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals.
In Proceedings of FORMATS-FTRTFT, volume 3253 of LNCS, pages 152–166,
2004.

[111] R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, and T. Villa. Robotic surgery.
Robotics & Automation Magazine, IEEE, 18(3):24–32, 2011.

[112] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook. Response surface
methodology: process and product optimization using designed experiments. Wi-
ley & Sons.

[113] R. Natella, D. Cotroneo, and H. S. Madeira. Assessing dependability with
software fault injection: A survey. ACM Computing Surveys (CSUR), 48(3):44,
2016.

[114] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta, and
G. J. Pappas. Monte-carlo techniques for falsification of temporal properties
of non-linear hybrid systems. In Proceedings of the 13th ACM International
Conference on Hybrid Systems: Computation and Control, pages 211–220. ACM
Press, 2010.

127

[115] W. L. Oberkampf and T. G. Trucano. Verification and validation in computa-
tional fluid dynamics. Progress in Aerospace Sciences, 38(3):209–272, 2002.

[116] D. of Defense. Dod modeling and simulation (m&s) verification, validation, and
accreditation (vv&a), December 2009.

[117] M. Osch. Hybrid input-output conformance and test generation. In
K. Havelund, M. Nez, G. Rou, and B. Wolff, editors, Formal Approaches to
Software Testing and Runtime Verification, volume 4262 of Lecture Notes in
Computer Science, pages 70–84. Springer Berlin Heidelberg, 2006.

[118] D. G. V. Oss. Computer software in civil aircraft. In Digital Avionics Systems
Conference, 1991. Proceedings., IEEE/AIAA 10th, pages 324–330. IEEE, 1991.

[119] E. Plaku, L. E. Kavraki, and M. Y. Vardi. Falsification of ltl safety properties
in hybrid systems. In Proc. of the Conf. on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 5505 of LNCS, pages 368
– 382, 2009.

[120] A. Platzer and E. M. Clarke. Computing differential invariants of hybrid systems
as fixedpoints. Formal Methods in System Design, 35(1):98–120, 2009.

[121] A. Platzer and J.-D. Quesel. KeYmaera: A hybrid theorem prover for hybrid
systems. In A. Armando, P. Baumgartner, and G. Dowek, editors, International
Joint Conference on Automated Reasoning, volume 5195 of LNCS, pages 171–
178. Springer, 2008.

[122] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer. How to model
and prove hybrid systems with keymaera: A tutorial on safety. International
Journal on Software Tools for Technology Transfer, 18(1):67, 2016.

[123] N. Ramdani, N. Meslem, and Y. Candau. Reachability of uncertain nonlinear
systems using a nonlinear hybridization. In HSCC ’08: Proceedings of the 11th
international workshop on Hybrid Systems, pages 415–428, Berlin, Heidelberg,
2008. Springer-Verlag.

[124] A. Rizk, G. Batt, F. Fages, and S. Soliman. On a continuous degree of sat-
isfaction of temporal logic formulae with applications to systems biology. In
International Conference on Computational Methods in Systems Biology, num-
ber 5307 in LNCS, pages 251–268. Springer, 2008.

[125] H. Roehm, T. Heinz, and E. C. Mayer. Stlinspector: Stl validation with guar-
antees. In Proceedings of the 29th International Conference on Computer Aided
Verification, 2017.

[126] S-TaLiRo: Temporal Logic Falsification Of Cyber-Physical Systems. https://
sites.google.com/a/asu.edu/s-taliro/s-taliro, 2013. [Online; accessed
April-2014].

[127] A. Saadat. Defect information report. http://www-odi.nhtsa.dot.gov/acms/
cs/jaxrs/download/doc/UCM450071/RCDNN-14V053-0945.pdf, 2014.

128

https://sites.google.com/a/asu.edu/s-taliro/s-taliro
https://sites.google.com/a/asu.edu/s-taliro/s-taliro
http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM450071/RCDNN-14V053-0945.pdf
http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM450071/RCDNN-14V053-0945.pdf

[128] S. Sankaranarayanan and G. Fainekos. Falsification of temporal properties of
hybrid systems using the cross-entropy method. In ACM International Confer-
ence on Hybrid Systems: Computation and Control, 2012.

[129] S. Sankaranarayanan and G. Fainekos. Simulating insulin infusion pump risks
by in-silico modeling of the insulin-glucose regulatory system. In International
Conference on Computational Methods in Systems Biology, 2012. [To Appear].

[130] S. Sankaranarayanan, H. Homaei, and C. Lewis. Model-based dependability
analysis of programmable drug infusion pumps. In Formal modeling and analysis
of timed systems, pages 317–334. Springer, 2011.

[131] C. Scott. Industry-nominated technology brakethroughs of nsf industry/univer-
sity cooperative research centers. Washington DC: National Science Founda-
tion, 2012. Online at: http://faculty.washington.edu/scottcs/NSF/2012/
NSF_Compendium_2012-WEB.pdf.

[132] C. Scott. Industry-nominated technology brakethroughs of nsf industry/univer-
sity cooperative research centers. Washington DC: National Science Founda-
tion, 2014. Online at: http://faculty.washington.edu/scottcs/NSF/2014/
NSF_Compendium_2014.pdf.

[133] H. J. Seltman. Experimental design and analysis. Pittsburgh: Carnegie Mellon
University, 2012.

[134] B. I. Silva and B. H. Krogh. Formal verification of hybrid systems using Check-
Mate: a case study. In Proceedings of the American Control Conference, vol-
ume 3, pages 1679 – 1683, June 2000.

[135] Simuquest. Enginuity. http://www.simuquest.com/products/enginuity.
Accessed: 2013-10-14.

[136] A. Singh, C. Ramakrishnan, and S. A. Smolka. Query-based model checking
of ad hoc network protocols. In Proceedings of Concurrency Theory, pages
603–619. Springer, 2009.

[137] M. H. Smith, G. J. Holzmann, and K. Etessami. Events and constraints: A
graphical editor for capturing logic requirements of programs. In Requirements
Engineering, 2001. Proceedings. Fifth IEEE International Symposium on, pages
14–22. IEEE, 2001.

[138] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos. A graphical
language for ltl motion and mission planning. In Robotics and Biomimetics
(ROBIO), 2013 IEEE International Conference on, pages 704–709. IEEE, 2013.

[139] L. Tan, J. Kim, O. Sokolsky, and I. Lee. Model-based testing and monitoring
for hybrid embedded systems. In Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration, pages 487–492, 2004.

129

http://faculty.washington.edu/scottcs/NSF/2012/NSF_Compendium_2012-WEB.pdf
http://faculty.washington.edu/scottcs/NSF/2012/NSF_Compendium_2012-WEB.pdf
http://faculty.washington.edu/scottcs/NSF/2014/NSF_Compendium_2014.pdf
http://faculty.washington.edu/scottcs/NSF/2014/NSF_Compendium_2014.pdf
http://www.simuquest.com/products/enginuity

[140] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification
and survey of analysis strategies for software product lines. ACM Computing
Surveys (CSUR), 47(1):6, 2014.

[141] J. Tretmans. Testing concurrent systems: A formal approach. In CONCUR
1999 Concurrency Theory, pages 46–65. Springer, 1999.

[142] S. Tripakis and T. Dang. Model-Based Design for Embedded Systems, chapter
Modeling, Verification and Testing using Timed and Hybrid Automata, pages
383–436. CRC Press, 2009.

[143] R. Vinter, M. Loomes, and D. Kornbrot. Applying software metrics to formal
specifications: A cognitive approach. In Software Metrics Symposium, 1998.
Metrics 1998. Proceedings. Fifth International, pages 216–223. IEEE, 1998.

[144] A. Wasylkowski and A. Zeller. Mining temporal specifications from object
usage. In 24th IEEE/ACM International Conference on Automated Software
Engineering, 2009.

[145] M. Woehrle, K. Lampka, and L. Thiele. Conformance testing for cyber-physical
systems. ACM Trans. Embed. Comput. Syst., 11(4):84:1–84:23, Jan. 2013.

[146] T. Wongpiromsarn, S. Mitra, A. Lamperski, and R. M. Murray. Verification of
periodically controlled hybrid systems: Application to an autonomous vehicle.
ACM Trans. Embed. Comput. Syst., 11(S2):53:1–53:24, Aug. 2012.

[147] H. Yang, B. Hoxha, and G. Fainekos. Querying parametric temporal logic
properties on embedded systems. In Int. Conference on Testing Software and
Systems, 2012.

[148] B. Yordanov, J. Tmov, I. ern, J. Barnat, and C. Belta. Formal analysis of piece-
wise affine systems through formula-guided refinement. Automatica, 49(1):261
– 266, 2013.

[149] P. Zhang, B. Li, and L. Grunske. Timed property sequence chart. Journal of
Systems and Software, 83(3):371–390, 2010.

[150] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking
with application to simulink/stateflow verification. In Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and Control,
pages 243–252, 2010.

[151] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and J. Kapinski. Multiple
shooting, cegar-based falsification for hybrid systems. In Proceedings of the 14th
International Conference on Embedded Software, page 5. ACM, 2014.

[152] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and J. Kapinski. A trajectory
splicing approach to concretizing counterexamples for hybrid systems. In IEEE
Conference on Decision and Control, 2013.

130

APPENDIX A

PROOFS

131

A.1 Lemma 4.4.1

Proof A.1.1 (sketch) Without loss of generality, we will prove only case (i) of
Lemma 4.4.1.1. Case (ii) is symmetric with respect to the temporal operator and
Lemma 4.4.1.2 is symmetric in terms of monotonicity. The proof is by induction on
the structure of the formula and it is similar to the proofs that appeared in [68].

For completeness of the presentation, we consider the case [[φ1 U〈α,θ〉φ2]](µ, i), where
〈∈ {[, (} and 〉 ∈ {],)}. The other cases are either similar or they are based on
the monotonicity of the max and min operators. We remark that the max and min
operators preserve monotonicity. Let θ1 ≤ θ2, then we want to show that:

[[φ1 U〈α,θ1〉φ2]](µ, i) ≤ [[φ1 U〈α,θ2〉φ2]](µ, i) (A.1)

To show that (A.1) holds, we utilize the robust semantics for MTL given in Defi-
nition 4.3.3 and observe that:

[[φ1 U〈α,θ2〉φ2]](µ, i) = max
j∈τ−1(τ(i)+〈α,θ2〉)

(
min([[φ2]](µ, j), min

i≤k<j
[[φ1]](µ, k))

)
=

max

(
max

j∈τ−1(τ(i)+〈α,θ1〉)

(
min([[φ2]](µ, j), min

i≤k<j
[[φ1]](µ, k))

)
,

max
j∈τ−1(τ(i)+〈θ1,θ2〉)

(
min([[φ2]](µ, j), min

i≤k<j
[[φ1]](µ, k))

))
=

max
(

[[φ1 U〈α,θ1〉φ2]](µ, i), [[φ1 U〈θ1,θ2〉φ2]](µ, i)
)
≥ [[φ1 U〈α,θ1〉φ2]](µ, i)

where 〈 ∈ {[, (} such that 〈α, θ1〉 ∩ 〈θ1, θ2〉 = ∅ and 〈α, θ1〉 ∪ 〈θ1, θ2〉 = 〈α, θ2〉.

A.2 Lemma 4.4.2

Proof A.2.1 (sketch) The proof is by induction on the structure of the formula and
it is similar to the proofs that appeared in [68]. For completeness of the presentation,
we consider the base case [[p[θ]]](µ, i). Let θ1 ≤ θ2, then O(p[θ1]) ⊆ O(p[θ2]). We will
only present the case for which y(i) 6∈ O(p[θ2]). We have:

O(pj[θ1]) ⊆ O(pj[θ2]) =⇒
distd(y(i),O(pj[θ1])) ≥ distd(y(i),O(pj[θ2])) =⇒
Distd(y(i),O(pj[θ1])) ≤ Distd(y(i),O(pj[θ2])) =⇒

[[pj[θ1]]](µ, i) ≤ [[pj[θ2]]](µ, i)

A.3 Theorem 4.4.1

Proof A.3.1 (sketch) The proof is by induction on the structure of the formula.
The base case is given by Lemmas 4.4.1 and 4.4.2.

Consider the first case where φ[~θ] = φ1[~θ]UI[θs]φ2[~θ]. Let ~θ, ~θ′ ∈ Rn

≥0, where ~θ � ~θ′.
Let i, j, k ∈ N . Then I[θs] ⊆ I[θ′s] and, for all i, by the induction hypothesis we have

[[φ1[~θ]]](µ, i)) ≤ [[φ1[~θ′]]](µ, i))

[[φ2[~θ]]](µ, i)) ≤ [[φ2[~θ′]]](µ, i))

132

Therefore, for all i ≤ k < j

min
i≤k<j

([[φ1[~θ]]](µ, k)) ≤ min
i≤k<j

([[φ1[~θ′]]](µ, k)) (A.2)

min([[φ2[~θ]]](µ, j), min
i≤k<j

([[φ1[~θ]]](µ, k))) ≤

min([[φ2[~θ′]]](µ, j), min
i≤k<j

([[φ1[~θ′]]](µ, k))) (A.3)

Then by (A.2) and (A.3) we have

[[φ[~θ]]](µ, i) = [[φ1[~θ]UI[θs]φ2[~θ]]](µ, i) =

sup
j∈τ−1(τ(i)+I[θs])

(
min([[φ2[~θ]]](µ, j), min

i≤k<j
[[φ1[~θ]]](µ, k))

)
≤

sup
j∈τ−1(τ(i)+I[θ′s])

(
min([[φ2[~θ′]]](µ, j), min

i≤k<j
[[φ1[~θ′]]](µ, k))

)
=

[[φ1[~θ′]UI[θ′s]φ2[~θ′]]](µ, i) = [[φ[~θ′]]](µ, i)

Therefore,

[[φ[~θ]]](µ, i) ≤ [[φ[~θ′]]](µ, i) (A.4)

A.4 Proposition 4.5.1

Proof A.4.1 If [[φ[~θ∗]]](µ∗) ≤ 0, then [[φ[~θ∗]]](Σ) ≤ 0. Since [[φ[~θ]]](Σ) is non-

increasing with respect to ~θ, then for all ~θ � ~θ∗, we also have [[φ[~θ]]](Σ) ≤ 0.

A.5 Proposition 4.5.2

Proof A.5.1 The interesting case to prove here is when we have ~θ such that [[φ[~θ]]](Σ) ≥
0 and we have ~θ′ such that [[φ[~θ′]]](Σ) < 0. See Fig. 4.6 (Left) for an illustration of
the arrangement of parameter valuations for a two parameter specification. In this
case,

γ = ‖~θ‖ ≥ ‖~θ′‖ ≥ ‖~θ‖
and

[[φ[~θ]]](Σ) ≥ 0 =⇒
‖~θ‖+ γ + [[φ[~θ]]](Σ) ≥ ‖~θ′‖

Therefore, if the problem in Eq. (4.3) is feasible, then the optimum of Eq. (4.3) and
Eq. (4.4) is the same.

A.6 Proposition 4.5.3

Proof A.6.1 If [[φ[~θ∗]]](µ∗) ≤ 0, then [[φ[~θ∗]]](Σ) ≤ 0. Since [[φ[~θ]]](Σ) is non-

decreasing with respect to ~θ, then for all ~θ � ~θ∗, we also have [[φ[~θ]]](Σ) ≤ 0.

133

A.7 Proposition 4.5.4

Proof A.7.1 The interesting case to prove here is when we have ~θ such that [[φ[~θ]]](Σ) <

0 and we have ~θ′ such that [[φ[~θ′]]](Σ) ≥ 0. See Fig. 4.6 (Right) for an illustration
of the arrangement of parameter valuations for a two parameter specification. In this
case

γ = −‖~θ‖, [[φ[~θ′]]](Σ) ≥ 0 and

‖~θ‖ ≥ ‖~θ′‖ ≥ ‖~θ‖ =⇒
‖~θ‖ ≥ ‖~θ′‖+ γ − [[φ[~θ′]]](Σ)

Therefore, if the problem in Eq. (4.3) is feasible, then the optimum of equations (4.3)
and (4.4) is the same.

134

	LIST OF TABLES
	LIST OF FIGURES
	1
	1.1 Testing and Verification of CPS
	1.1.1 V & V Terminology
	1.1.2 Model-Based Design

	1.2 Research Topics
	1.2.1 Specification Elicitation
	1.2.2 Multiple Parameter Specification Mining
	1.2.3 Practical Algorithms for Conformance

	1.3 Summary of Contributions

	2
	2.1 Systems and Signals
	2.2 Hybrid Systems
	2.3 Metric Temporal Logic
	2.4 Parametric Metric Temporal Logic
	2.5 Automated Test Case Generation
	2.6 Running Examples
	2.6.1 Automotive Transmission (AT)
	2.6.2 High-Fidelity Automotive Engine (HAE)
	2.6.3 Hybrid Nonlinear System (HS)

	3
	3.1 Introduction
	3.2 Visual Specification Tool
	3.3 Graphical Formalism
	3.4 Debugging Specifications
	3.5 Usability Study
	3.5.1 Hypotheses
	3.5.2 Demographics
	3.5.3 Experimental Design
	3.5.4 Metrics

	3.6 Results
	3.7 Preliminary Results on Hypothesis 2a
	3.8 Applications
	3.8.1 Robotic Surgery
	3.8.2 Quadcopter

	3.9 Related works
	3.10 Conclusion and Future Work

	4
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Robustness of Metric Temporal Logic Formulas
	4.4 Monotonicity of Parametric Metric Temporal Logic Formulas
	4.4.1 Single parameter PMTL formulas
	4.4.2 Multiple parameter PMTL formulas

	4.5 Temporal Logic Parameter Bound Computation
	4.5.1 Non-increasing Robustness Functions
	4.5.2 Non-decreasing Robustness Functions

	4.6 Parameter Falsification Domain
	4.6.1 RGDA Algorithm
	4.6.2 SDA Algorithm

	4.7 Experiments and a Case Study
	4.8 Related Work
	4.8.1 Parameter Mining Over Finite State Machines
	4.8.2 Parameter Mining Over Timed Automata
	4.8.3 Parameter Mining Over Hybrid Systems
	4.8.4 Comparison to the Parameter Synthesis Method

	4.9 Conclusion
	4.10 Future Work

	5
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Code Coverage for CPS
	5.4 Controller Coverage with Different Plants
	5.5 Coverage with Different Controllers
	5.6 Covering Arrays for Code Coverage of CPS
	5.7 Case Study: Toyota Engine Controller
	5.7.1 Simulated Annealing
	5.7.2 Grid Search
	5.7.3 Controller Branch Coverage

	5.8 Related Works
	5.9 Conclusions and Future Work
	BIBLIOGRAPHY
	A
	A.1 Lemma 4.4.1
	A.2 Lemma 4.4.2
	A.3 Theorem 4.4.1
	A.4 Proposition 4.5.1
	A.5 Proposition 4.5.2
	A.6 Proposition 4.5.3
	A.7 Proposition 4.5.4

