
Quantitative Verification for Neural Networks using ProbStars
Hoang-Dung Tran

dtran30@unl.edu

University of Nebraska-Lincoln

Lincoln, Nebraska, USA

Sungwoo Choi

schoi9@huskers.unl.edu

University of Nebraska-Lincoln

Lincoln, Nebraska, USA

Hideki Okamoto

hideki.okamoto@toyota.com

Toyota NA R&D

Ann Arbor, Michigan, USA

Bardh Hoxha

bardh.hoxha@toyota.com

Toyota NA R&D

Ann Arbor, Michigan, USA

Georgios Fainekos

georgios.fainekos@toyota.com

Toyota NA R&D

Ann Arbor, Michigan, USA

Danil Prokhorov

danil.prokhorov@toyota.com

Toyota NA R&D

Ann Arbor, Michigan, USA

ABSTRACT
Most deep neural network (DNN) verification research focuses on

qualitative verification, which answers whether or not a DNN vio-

lates a safety/robustness property. This paper proposes an approach

to convert qualitative verification into quantitative verification for

neural networks. The resulting quantitative verification method

not only can answer YES or NO questions but also can compute

the probability of a property being violated. To do that, we intro-

duce the concept of a probabilistic star (or shortly ProbStar), a new

variant of the well-known star set, in which the predicate vari-

ables belong to a Gaussian distribution and propose an approach to

compute the probability of a probabilistic star in high-dimensional

space. Unlike existing works dealing with constrained input sets,

our work considers the input set as a truncated multivariate normal

(Gaussian) distribution, i.e., besides the constraints on the input

variables, the input set has a probability of the constraints being

satisfied. The input distribution is represented as a probabilistic

star set and is propagated through a network to construct the out-

put reachable set containing multiple ProbStars, which are used to

verify the safety or robustness properties of the network. In case of

a property is violated, the violation probability can be computed

precisely by an exact verification algorithm or approximately by an

overapproximate verification algorithm. The proposed approach

is implemented in a tool named StarV and is evaluated using the

well-known ACASXu networks and a rocket landing benchmark.

CCS CONCEPTS
• Software and its engineering → Software verification.
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1 INTRODUCTION
Formal verification of deep neural networks (DNNs) is crucial for as-

suring the safety and correctness of learning-enabled safety-critical

autonomous systems [25]. A large body of research focused on

qualitative verification of safety and robustness properties of DNNs

under bounded input space [20, 32]. In this context, sound and

complete verification algorithms [3, 16, 21, 30, 34, 36] return SAT

(a property is satisfied) or UNSAT (property is not satisfied) while

sound verification algorithms [27, 39] return UNSAT or UNKNOWN

(due to overapproximation error) results. Although formal verifica-

tion for DNNs has been an explosive research direction with many

efficient tools and methods proposed recently, quantitative verifica-
tion for DNNs focusing on computing/estimating the probability

of a property being violated is still a challenging and open prob-

lem. Compared to qualitative approaches, quantitative verification

provides a probabilistic guarantee for DNNs. This is very useful in

practice, especially for learning-based control systems, where sens-

ing inputs applied to a DNN controller always contain inevitable

noises that can be modeled as a multivariate Gaussian (normal)

distribution. Unfortunately, there are only a few quantitative ver-

ification methods proposed until now. Importantly, to the best of

our knowledge, most quantitative verification methods focuses on

binary neural networks with quantized finite discrete inputs space
[5, 26, 40]. There is only one method proposed for the popular ReLU

DNNs [10] with continuous input space.
In this paper, we propose an approach to convert the recent star

reachability-based qualitative verification [30] into a quantitative

verification approach for ReLU networks used in learning-based

control systems, e.g., the supervisory control ACASXU networks

[22], using probabilistic star reachability. Although the research

goal is the same as [10], i.e., computing the probability of violating

a safety specification, our approach is different. In [10], the authors

consider ellipsoidal input space with Gaussian random variables.

By propagating a confidence ellipsoid of the input through the net-

work, the authors construct a confidence ellipsoid for the output

by abstracting the nonlinear ReLU activation functions using affine

and quadratic constraints. The safety of the original network can

be proved by analyzing the abstracted network using semidefinite

programming. In our work, we consider a more general input space

with linear constraints on Gaussian random variables, i.e., a trun-

cated Gaussian distribution. Notably, we show that the probability

of a violating safety specification can be computed precisely given

a truncated Gaussian distribution input instead of approximately

like [10].
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Our approach is built on a new set representation named proba-

bilistic star ( or shortly ProbStar), a variant of the well-known star

set used in DNNs [3, 29–31, 33], and linear dynamical and hybrid

systems verification [1, 2, 4, 8]. Mathematically, a ProbStar is an

affine mapping of a truncated multivariate Gaussian distribution.

We model the inputs as a ProbStar and propagate it through the

network to construct the reachable output set containing multiple

ProbStars. The reachable output set is then used to verify a user-

defined safety property, and the probability of violating the safety

property will be derived. In this work, two verification strategies

are proposed. The first one is the exact verification, where the pre-

cise probability of safety violation is computed. The second one

overapproximates the probability of safety violation by filtering

out reachable intermediate sets (in the layers) with probabilities

lower than a user-predefined threshold. While the exact verifica-

tion algorithm rigorously explores all paths in reachability analysis,

the overapproximate verification algorithm focuses on exploring

paths with large probabilities. Therefore, it reduces the number

of reachable sets involved and memory consumption in verifica-

tion. However, the overapproximate verification algorithm must

compute the probability of intermediate ProbStars before filtering,

which may be costly. Our quantitative verification approach is im-

plemented in a tool named StarV using Python. We evaluate the

proposed approach on the well-known ACAS Xu networks [22]

and on a neural network controller for a rocket lander benchmark

for SpacEx Falcon 9 [37] trained using reinforcement learning. The

experiments show that our approach successfully verifies all unsafe

ACASXu networks and the rocket networks and provides the lower

bound and upper bound of the networks’ probability of violation.

In sum, the main contributions of this paper are:

• A new set representation named probabilistic star that is

suitable for quantitative reasoning about ReLU networks.

• A new quantitative approach with exact and overapproxi-

mate verification algorithms for ReLUDNNs used in learning-

based control systems using probabilistic star reachability.

• An implementation of the proposed approach in the tool

named StarV that is available online for formal method and

control communities to use and compare.

• A thorough evaluation and comparison of the proposed ap-

proach on a set of well-known benchmarks.

2 PRELIMINARIES
2.1 ReLU networks
A feed-forward neural network F may consist of one or multiple

ReLU layers. Each layer ℓ , 1 ≤ ℓ ≤ 𝑘 , consists 𝑛ℓ neurons that are

interconnected to 𝑛ℓ−1 neurons in a preceding layer. A ReLU layer

performs two operations: affine mapping and ReLU activating. The

affine mapping operation is a function performing a linear trans-

formation on the output of the previous layer. The ReLU activating

operation applies the ReLU activation function to the output from

the affine mapping operation, 𝑅𝑒𝐿𝑈 (𝑦) = 𝑚𝑎𝑥 (0, 𝑦). The output
vector 𝑦 of the layer 𝐿ℓ is expressed as:

𝑦ℓ = 𝐿ℓ (𝑦ℓ−1) = 𝑅𝑒𝐿𝑈 (𝑊ℓ × 𝑦ℓ−1 + 𝑏ℓ ) .

where𝑊ℓ ∈ R𝑛ℓ×𝑛ℓ−1
and 𝑏ℓ ∈ R𝑛ℓ

are the weight matrix and the

bias vector of a ℓ-th layer, respectively. Given an input vector 𝑥 ,

the output of the ReLU network F is computed forwardly layer-

by-layer 𝑦 = F (𝑥) = 𝐿𝑘 ((𝐿𝑘−1
, . . . , (𝐿1 (𝑥)))).

In the following, we formally define the probabilistic reachability

and quantitative verification of ReLU networks. We denoteN(`, Σ)
as a multivariate Gaussian distribution with mean ` ∈ R𝑛 and

variance Σ ∈ R𝑛×𝑛 throughout the paper.

2.2 Problem formulation
In this paper, we are interested in two problems, including proba-

bilistic reachability and quantitative verification of ReLU networks.

Definition 2.1 (Probabilistic Reachability). Given a ReLU
network F and a constrained probabilistic input set, 𝑋 = {𝑥 ∈
R𝑛 | 𝐶𝑥 ≤ 𝑑 ∧ 𝑥 ∼ N(`, Σ)}, the probabilistic reachability analysis
of the network F is the process of computing the probabilistic output
set of the network and its associate probability, i.e., 𝑌 = F (𝑥), 𝑥 ∈ 𝑋 .

Definition 2.2 (Quantitative Verification). Given a ReLU
network F , a constrained probabilistic input set 𝑋 = {𝑥 ∈ R𝑛 | 𝐶𝑥 ≤
𝑑 ∧ 𝑥 ∼ N(`, Σ)}, and a linear specification 𝑆 ≜ 𝐻𝑦 ≤ 𝑔, where 𝑦 is
the output of the network, the quantitative verification of the network
is the process of computing the probability of the network satisfying
its specification, i.e., P(𝐻𝑦 ≤ 𝑔,𝑦 ∈ 𝑌 = F (𝑥), 𝑥 ∈ 𝑋 ), where P
states for a probability.

In the following section, we introduce a new concept of proba-

bilistic star set, its properties, and probability computation, which

are important to solve the probabilistic reachability and quantitative

verification of a ReLU network.

3 PROBABILISTIC STAR
3.1 Definition and properties

Definition 3.1 (Probabilistic Star). A probabilistic star (or
simply probstar) Θ is a tuple ⟨𝑐,𝑉 ,N , 𝑃, 𝑙, 𝑢⟩ where 𝑐 ∈ R𝑛 is the
center, 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑚} is a set of m vectors in R𝑛 called basis
vectors, 𝑃 : R𝑚 → {⊤,⊥} is a predicate, 𝑙 and 𝑢 are the lower-bound
and upper-bound vectors of the predicate variables, which are random
variables of a Gaussian distributionN . The basis vectors are arranged
to form the probstar’s 𝑛×𝑚 basis matrix. The set of states represented
by the probstar is given as:

⟦Θ⟧ = {𝑥 | 𝑥 = 𝑐 + Σ𝑚𝑖=1
(𝛼𝑖𝑣𝑖 ), 𝛼 = [𝛼1, · · · , 𝛼𝑚]𝑇 ∼ N ,

𝑃 (𝛼) ≜ 𝐶𝛼 ≤ 𝑑, 𝑙 [𝑖] ≤ 𝛼𝑖 ≤ 𝑢 [𝑖], }.
(1)

We will refer to both the tuple Θ and the set of states ⟦Θ⟧ as Θ.
Definition 3.2 (Probability). Given a probstar Θ, the prob-

ability of the probstar is the probability of the predicate random
variables 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑚]𝑇 satisfying its constraints and bounds,
i.e., P(Θ) = P(𝐶𝛼 ≤ 𝑑 ∧ 𝑙 ≤ 𝛼 ≤ 𝑢, 𝛼 ∼ N(`, Σ)). A probstar is
an empty set if its probability is zero, i.e., P(Θ) = 0.

Definition 3.3 (Boundness). A probstar Θ = ⟨𝑐,𝑉 ,N , 𝑃, 𝑙, 𝑢⟩ is
bounded if the predicate 𝑃 (𝛼) ≜ 𝐶𝛼 ≤ 𝑑 a bounded polytope.

Proposition 1. Any bounded constrained probabilistic input set
𝑋 ≜ {𝑥 | 𝐶𝑥 ≤ 𝑑 ∧ 𝑥 ∼ N(`, Σ), 𝑥 ∈ R𝑛} is a probstar.

Proposition 2 (Affine Mapping). Given a probstar set Θ =

⟨𝑐,𝑉 ,N , 𝑃, 𝑙, 𝑢⟩, an affine mapping of the probstar Θ with the map-
ping matrix𝑊 and offset vector 𝑏 defined by Θ̄ = {𝑦 | 𝑦 = 𝑊𝑥 +
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𝑏, 𝑥 ∈ Θ} is another probstar with the following characteristics:
Θ̄ = ⟨𝑐,𝑉 , ¯N , 𝑃, ¯𝑙, 𝑢⟩, 𝑐 = 𝑊𝑐 + 𝑏, 𝑣 = {𝑊𝑣1,𝑊 𝑣2, · · · ,𝑊 𝑣𝑚},
¯N = N , 𝑃 ≡ 𝑃, ¯𝑙 ≡ 𝑙, 𝑢 ≡ 𝑢.

Proposition 3 (Intersection). The intersection of a probstar
Θ ≜ ⟨𝑐,𝑉 ,N , 𝑃, 𝑙, 𝑢⟩ and a half-spaceH ≜ {𝑥 | 𝐻𝑥 ≤ 𝑔} is another
probstar with the following characteristics.

Θ̄ = Θ ∩H = ⟨𝑐,𝑉 , ¯N , 𝑃, ¯𝑙, 𝑢⟩, 𝑐 = 𝑐, 𝑉 = 𝑉 , ¯N = N , 𝑃 = 𝑃 ∧ 𝑃 ′,
𝑃 ′ (𝛼) ≜ (𝐻 ×𝑉𝑚)𝛼 ≤ 𝑔 − 𝐻 × 𝑐,𝑉𝑚 = [𝑣1 𝑣2 · · · 𝑣𝑚],
¯𝑙 = 𝑙, 𝑢 = 𝑢.

Proposition 4 (Optimized range of a state). Given a probstar
set Θ = ⟨𝑐,𝑉 ,N , 𝑃, 𝑙, 𝑢⟩, the range of the 𝑖𝑡ℎ state 𝑥 [𝑖] of the prob-
star set can be found by solving the following linear programming
optimization problems:

𝑥 [𝑖]𝑚𝑖𝑛 (𝑚𝑎𝑥 ) =𝑚𝑖𝑛(𝑚𝑎𝑥) (𝑐 [𝑖] + Σ𝑚𝑗=1
𝑣 𝑗 [𝑖]𝛼 𝑗 ),

𝑠 .𝑡 . 𝑃 (𝛼) ≜ 𝐶𝛼 ≤ 𝑑, 𝑙 ≤ 𝛼 ≤ 𝑢.

Proposition 5 (Estimated range of a state). Given a probstar
set Θ = ⟨𝑐,𝑉 ,N , 𝑃, 𝑙, 𝑢⟩, the range of the state vector 𝑥 of the probstar
set can be estimated quickly without solving the linear programming
optimization problems by using only the lower bound and upper bound
vectors of the predicate variables.

𝑙𝑒𝑠𝑡 ≤ 𝑥 = 𝑐 +𝑉𝛼 = 𝑐 +𝑚𝑎𝑥 (0,𝑉 )𝛼 +𝑚𝑖𝑛(0,𝑉 )𝛼 ≤ 𝑢𝑒𝑠𝑡 ,

𝑙𝑒𝑠𝑡 = 𝑐 +𝑚𝑎𝑥 (0,𝑉 )𝑙 +𝑚𝑖𝑛(0,𝑉 )𝑢,
𝑢𝑒𝑠𝑡 = 𝑐 +𝑚𝑎𝑥 (0,𝑉 )𝑢 +𝑚𝑖𝑛(0,𝑉 )𝑙 .

3.2 Computing a probstar’s probability
The ultimate goal of this work is to compute the probability of a

network violating its specification given a constrained, probabilistic

input set represented as a probstar. Therefore, one key component

in our approach is the computation of the probability of a probstar,

which is an extension of the following𝑚-dimensional multivariate

normal law under linear restrictions [6, 12]:

𝑓 (𝑥) = 1

𝑝
𝑒𝑥𝑝 (−1

2

𝑥𝑇 𝑥)I{d ≤ 𝐶𝑥 ≤ ¯𝑑},

𝑥 = [𝑥1, . . . , 𝑥𝑚]𝑇 ,𝐶 ∈ Rℎ×𝑚, ¯𝑑, d ∈ Rℎ,
(2)

where I{·} is the indicator function, 𝑟𝑎𝑛𝑘 (𝐶) = ℎ ≤ 𝑚, and 𝑝 =

P(d ≤ 𝐶𝑥 ≤ ¯𝑑) is the probability that a random vector 𝑥 with

standard normal (Gaussian) distribution in 𝑑-dimensions, i.e., 𝑥 ∼
N(0, 𝐼𝑚), falls in the 𝐻 -polytope defined by the linear inequalities,

where 𝐼𝑚 is a𝑚-dimensional identity matrix.

Although there are efficient methods [6, 13] for computing the

probability P(d ≤ 𝐶𝑥 ≤ ¯𝑑), these methods require the constraint

matrix𝐴 be a full rank matrix, 𝑟𝑎𝑛𝑘 (𝐶) = ℎ andℎ ≤ 𝑚, which is not

usually the case in our problem. After the ReLU activating operation

in reachability analysis, new constraints will be added to a probstar

input set, making the predicate constraint matrix, i.e., 𝐶 , become

a rank-deficient matrix, i.e., 𝑟𝑎𝑛𝑘 (𝐶) < ℎ, and ℎ > 𝑚 indicating

that number of linear constraints is larger than the number of

predicate random variables in general. In this section, we propose

an approach for handling this general case using singular value
decomposition (SVD) and Gaussian approximation of a Dirac Delta
distribution.

Gaussian approximation of a Dirac Delta distribution. We

use a simple example in the following to illustrate the idea. Let’s

consider a 2-dimensional Gaussian distribution N :

𝛼 =

[
𝛼1

𝛼2

]
∼ N(` =

[
0

0

]
, Σ =

[
0 0

0 1

]
).

This distribution is singular as the variance matrix Σ is not a

positive definite matrix. We can see that the distribution N is

a projection of a non-singular 1-dimensional Gaussian distribu-

tion N2 (0, 1) onto a hyperplane 𝛼1 = 0 in a 2-dimensional space

(𝛼1, 𝛼2). In other words, the probability mass of the distribution

N relies completely on hyperplane 𝛼1 = 0. If we want to com-

pute the probability P(2𝛼1 + 𝛼2 ≤ 2), the well-known Genz [13]

and Botev [6] methods do not work as the distribution is singu-

lar. However this probability can be obtained manually as follows,

P(2𝛼1 + 𝛼2) ≤ 2 = P(𝛼2 ≤ 2) = 0.9772 as 𝛼1 = 0. The question

is how we can compute this probability automatically using the

Genz and Botev methods. Remind that the first random variable

belongs to a normal distribution with zero variance 𝛼1 ∼ N1 (0, 0).
This means that its associated probability density function (PDF)

is a Dirac Delta function. Let’s consider a Gaussian distribution

with a PDF 𝛿𝜖 (𝑥) = 1

|𝜖 |
√
𝜋
𝑒−(

𝑥
𝜖
)2
. We have 𝛿 (𝑥) = lim𝜖→0 𝛿𝜖 (𝑥),

indicating that a Direct Delta distribution can be approximated by

a Gaussian distribution with a tiny standard deviation 𝜖 ≈ 0. There-

fore, the singular Gaussian distribution N can be approximated by

a non-singular Gaussian distribution N ′ as follows.

𝛼 =

[
𝛼1

𝛼2

]
∼ N ′ (` =

[
0

0

]
, Σ =

[
𝜖2

0

0 1

]
) .

where 𝜖 is a very small positive value. Let 𝜖 = 10
−4

, the probability

P(2𝛼1 + 𝛼2 ≤ 2), [𝛼1, 𝛼2]𝑇 ∼ N ′ can be computed using the Genz

[13] and Botev [6] methods with the result of 0.9772.

Algorithm for computing a probstar’s probability. From Defi-

nition 3.2, a probstar’s probability is:

P(Θ) = P(𝐶𝛼 ≤ 𝑑 ∧ 𝑙 ≤ 𝛼 ≤ 𝑢, 𝛼 ∼ N(`, Σ))𝑚
= P(𝐶′𝛼 ≤ 𝑑′, 𝛼 ∼ N(`, Σ)),

𝐶′ =
[
𝐶; 𝐼𝑚 ; −𝐼𝑚

]
, 𝑑′ =

[
𝑑 ; 𝑢; −𝑙

]
.

We consider the general case where𝐶′ is not a full row rank matrix

that the existing methods cannot be applied directly to compute

the probability. Assume that 𝐶′ ∈ Rℎ×𝑚, 𝑑′ ∈ Rℎ , where ℎ ≫ 𝑚.

Let 𝑟 = 𝑟𝑎𝑛𝑘 (𝐶′) ≤ 𝑚. Using SVD decomposition, we have:

𝐶′ = 𝑈𝑄𝑉𝑇 ,𝑈 ∈ Rℎ×ℎ, 𝑄 ∈ Rℎ×𝑚,𝑉 ∈ R𝑚×𝑚,

𝑄 =

[
𝑆 0𝑟×(𝑚−𝑟 )

0(ℎ−𝑟 )×𝑟 0(ℎ−𝑟 )×(𝑚−𝑟 )

]
, 𝑆 =


𝜎2

1

. . .

𝜎2

𝑟

 ∈ R
𝑟×𝑟

𝑉𝑇 =

[
𝑉11 𝑉12

𝑉21 𝑉22

]
,𝑉11 ∈ R𝑟×𝑟 ,𝑉12 ∈ R𝑟×(𝑚−𝑟 ) ,

𝑉21 ∈ R(𝑚−𝑟 )×𝑟 ,𝑉22 ∈ R(𝑚−𝑟 )×(𝑚−𝑟 ) .

Let 𝑄 = 𝑄𝑉𝑇
, 𝛼 ′ = 𝑄 × 𝛼 , we can see that 𝛼 ′ ∈ Rℎ has the form of:

𝛼 ′ =
[

𝑆 ′

0(ℎ−𝑟 )×𝑚

]
𝛼, 𝑆 ′ = [𝑆𝑉11 𝑆𝑉12] ∈ R𝑟×𝑚

3



In other words, 𝛼 ′ is an affine mapping of 𝛼 from𝑚-dimensional

space to ℎ-dimensional space. As 𝛼 ∼ N(`, Σ), 𝛼 ′ is a vector of

random variables of a singular Gaussian distributionN ′ whose the
distribution mass relies on the hyper plane 𝛼 ′

𝑟+1 = · · · = 𝛼 ′
ℎ
= 0.

As shown before, we can approximate a singular Gaussian distri-

bution by a non-singular Gaussian distribution. Let 𝑎 = 𝑆 ′𝛼 ∼
N(𝑆 ′`, 𝑆 ′Σ(𝑆 ′)𝑇 ), 𝑏 ∼ N(0ℎ−𝑟 , 𝜖𝐼ℎ−𝑟 ), we have:

𝛼 ′ ≈ [𝑎 𝑏]𝑇 ∼ N(`′, Σ′)

`′ =
[
𝑆 ′`
0ℎ−𝑟

]
, Σ′ =

[
𝑆 ′Σ(𝑆 ′)𝑇 0

0 𝜖𝐼ℎ−𝑟

]
Note that𝑈 is an orthogonal matrix and thus is full row rank. There-

fore, we can compute P(Θ) = P(𝑈𝛼 ′ ≤ 𝑑′, 𝛼 ′ ∼ N(`′, Σ′) using
existing methods [6, 13]. Algorithm 1 summarizes the computation

of a probstar’s probability.

Algorithm 1 Computation of a probstar’s probability

Input: Θ = ⟨𝑐,𝑉 ,N, 𝑃, 𝑙,𝑢 ⟩ # A probstar

Output: 𝑝 # probability

1: procedure 𝑝 = getProbability(Θ = ⟨𝑐,𝑉 ,N, 𝑃, 𝑙,𝑢 ⟩)
2: 𝐶 ← 𝑃.𝐶 , 𝑑 ← 𝑃.𝑑 , ` ← N.`, Σ← N.Σ

3: 𝐶′ =
[
𝐶 𝐼𝑚 −𝐼𝑚

]𝑇
, 𝑑 ′ =

[
𝑑 𝑢 −𝑙

]𝑇
4: 𝑈 , 𝑆,𝑉𝑇 = 𝑆𝑉𝐷 (𝐶′ ) # SVD decomposition

5: 𝑉𝑇 =

[
𝑉11 𝑉12

𝑉21 𝑉22

]
,𝑉11 ∈ R𝑟×𝑟 ,𝑉12 ∈ R𝑟×(𝑚−𝑟 )

6: 𝑆 ′ = [𝑆𝑉11 𝑆𝑉12 ] ∈ R𝑟×𝑚

7: `′ =

[
𝑆 ′`
0ℎ−𝑟

]
, Σ′ =

[
𝑆 ′Σ(𝑆 ′ )𝑇 0

0 𝜖𝐼ℎ−𝑟

]
8: return 𝑝 = P(𝑈𝛼 ′ ≤ 𝑑 ′, 𝛼 ′ ∼ N(`′, Σ′ ) # using [6, 13]

4 PROBABILISTIC STAR REACHABILITY
Based on the proposed probabilistic star set representation, we

can perform quantitative verification for ReLU networks using

reachability analysis. Our verification approach has two steps: 1)

computing the probabilistic reachable set of a ReLU network’s

output (reachability analysis) and 2) computing the probability of

the output reachable set violating a given user-defined specification.

4.1 Probabilistic Reachable set computation
Computing the reachable set of a ReLU network can be done layer-

by-layer. In this approach, a probstar input set can be propagated

through the network layer-by-layer to construct the output reach-

able set. The core computation reduces to a single-layer reachability

problem which can be done in two steps: affine mapping and ReLU
activating. Let Θ be a probstar input set to a layer 𝐿 with weight

matrix𝑊 and bias vector 𝑏, the output reachable set 𝑅 of the layer

is:

Θ = ⟨𝑐,𝑉 ,N , 𝑃, 𝑙, 𝑢⟩,
Θ′ =𝑊Θ + 𝑏 = ⟨𝑊𝑐 + 𝑏,𝑊𝑉 ,N , 𝑃, 𝑙, 𝑢⟩,
𝑅 = 𝐿(Θ) = 𝑅𝑒𝐿𝑈 (𝑊Θ + 𝑏) = 𝑅𝑒𝐿𝑈 (Θ′) .

Similar to star reachability [30], ReLU activating on a probstar set,

i.e., 𝑅𝑒𝐿𝑈 (Θ′), can be done neuron-by-neuron by a sequence of

stepReLU operations 𝑅𝑒𝐿𝑈𝑖 , 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the number

of neurons in the layer.

𝑅 = 𝑅𝑒𝐿𝑈𝑛 ((𝑅𝑒𝐿𝑈𝑛−1 (. . . (𝑅𝑒𝐿𝑈1 (Θ′))))).

A stepReLU operation 𝑅𝑒𝐿𝑈𝑖 applies the ReLU activation on the 𝑖𝑡ℎ

input 𝑥𝑖 of the input set. Depending on the range of 𝑥𝑖 , an input set

can be split into two intermediate sets after a stepReLU operation.

Let 𝑙𝑏𝑖 and 𝑢𝑏𝑖 be the lower bound and upper bound of the input

𝑥𝑖 , i.e., 𝑙𝑏𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑏𝑖 . To compute the intermediate reachable set

in a stepReLU operation, we consider three cases. First, if 𝑙𝑏𝑖 ≤ 0,

we have 𝑥𝑖 ≥ 0, thus 𝑅𝑒𝐿𝑈 (𝑥𝑖 ) = 𝑥𝑖 . Second, if 𝑢𝑏𝑖 ≤ 0, we have

𝑥𝑖 ≤ 0, thus 𝑅𝑒𝐿𝑈 (𝑥𝑖 ) = 0. Third, if 𝑙𝑏𝑖 < 0 and 𝑢𝑏𝑖 > 0, the input

𝑥𝑖 can be larger or smaller than zero. Therefore, applying the ReLU

activation function produces two possible outputs: 0 when 𝑥𝑖 ≤ 0

or 𝑥𝑖 when 𝑥𝑖 > 0. Figure 1 illustrates a stepReLU operation on

the first input 𝑥1 in a 2-dimensional input set Θ′ in which 𝑙𝑏1 < 0

and 𝑢𝑏1 > 0. In this example, the input set is split into two sets

Figure 1: stepReLU operation on a probstar.

Θ1 = Θ′ ∧ 𝑥1 ≥ 0 and Θ2 = Θ′ ∧ 𝑥1 ≤ 0. As we known for all

𝑥 ∈ Θ1, 𝑥1 ≥ 0, we have �̃�1 = 𝑅𝑒𝐿𝑈1 (Θ1) = Θ1. Similarly, for all

𝑥 = [𝑥1 , 𝑥2]𝑇 ∈ Θ2, 𝑥1 ≤ 0, thus �̃�2 = 𝑅𝑒𝐿𝑈1 (Θ2) = [0, 𝑥2]𝑇 . The
visualization of the intermediate reachable sets �̃�1, �̃�2 is shown in

Figure 1.

Since after one stepReLU operation, an input set can be split into

two new intermediate sets, the output reachable set of an 𝑛-neurons

ReLU layer may contain 2
𝑛
probstars in the worst case. One can

see that the intersection (Proposition 3) and affine mapping (Propo-

sition 2) are two basic computation steps involved in a stepReLU

operation. These operations do not change the internal Gaussian

distribution of the predicate variables. They only change the proba-

bility of the obtained intermediate reachable sets compared to the

input set’s probability. Importantly, as Θ = Θ1 ∪ Θ2, the sum of

all intermediate reachable sets’ probability equals the input set’s

probability, i.e., P(Θ′) = P(�̃�1) + P(�̃�2).

4.2 Reducing reachability time
To perform the stepReLU operation, we need to know the lower

bound 𝑙𝑏𝑖 and upper bound 𝑢𝑏𝑖 of input 𝑥𝑖 that can be obtained by

solving linear programming optimization problems (Proposition

4), which are costly. Fortunately, we can significantly reduce the

number of LPs solved in reachability by estimating these bounds

quickly using the predicate variables’ bounds (Proposition 5) with-

out solving LPs. If the estimated lower bound 𝑙𝑏𝑒𝑠𝑡
𝑖
≥ 0, we can

move to the next stepReLU operation quickly without doing any-

thing. If the estimated upper bound 𝑢𝑏𝑒𝑠𝑡
𝑖
≤ 0, we can construct the

intermediate reachable set by projecting (affine mapping operation)

the input set onto the hyperplane 𝑥𝑖 = 0. If 𝑙𝑏𝑒𝑠𝑡
𝑖

< 0 and 𝑢𝑏𝑒𝑠𝑡
𝑖

> 0,
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a split may occur at input 𝑥𝑖 . In this case, we can solve LPs to de-

termine if the split actually occurs to construct the intermediate

reachable sets.

Updating predicate variables’ bounds. Estimating tight bounds
of the input 𝑥 is important to reduce the number of LPs solved in

reachability analysis. When a probstar is split, e.g., Θ = Θ1 ∪ Θ2

in Figure 1, a new constraint is added to a probstar to form a new

set, e.g., Θ1 = Θ ∧ 𝑥1 ≥ 0. This constraint will be transformed into

a new constraint on predicate variables (Proposition 3). Adding

this new constraint may change the lower bound and upper bound

vectors of the predicate variables. If we do not update new lower

bound and upper bound vectors for the predicate variables 𝛼 , the

next estimation of the lower bound and upper vectors of inputs

(to neurons in later layers) based on the old predicate variable’s

bounds will be more and more conservative and not useful. There-

fore, it is important to update new predicate variables’ bounds after

adding a new constraint to a probstar. In this paper, we implement

a lightweight domain contraction method to update these bounds

[3].

The idea of updating predicate variables’ bounds is illustrated

by a small example in Figure 2. In this example, we have a 2-

Figure 2: Updating predicate variables’ bounds.

dimensional probstar Θ with predicate 𝑃 ≜ 𝐶𝛼 ≤ 𝑑, 𝛼 = [𝛼1, 𝛼2]𝑇
and the predicate variables’ bounds 𝑙 = [−1, −1]𝑇 , 𝑢 = [1, 1]𝑇 (the

blue box in the figure). If a new constraint −0.25𝛼1 + 𝛼2 ≤ 0.25

is added to this probstar, a new Θ′ is obtained with a new pred-

icate 𝑃 ′ ≜ 𝐶𝛼 ≤ 𝑑 ∧ (−0.25𝛼1 + 𝛼2 ≤ 0.25). One can see that

the exact new bounds of the predicate variables in Θ′ (the purple
rectangle in Figure 2) can be obtained by solving four LPs, i.e.,

𝑚𝑖𝑛(𝑚𝑎𝑥)𝛼𝑖 , 𝑖 = 1, 2, 𝑠 .𝑡 . 𝑃 ′ ≜ 𝐶𝛼 ≤ 𝑑 ∧ (−0.25𝛼1 + 𝛼2 ≤ 0.25).
However, as we want to reduce the reachability time by avoiding

solving LPs, we estimate the new bounds of the predicate variables

(the green rectangle) using only their old bounds (the blue rectan-

gle) and the new constraint. From the new constraint and the old

bounds, we have: 𝛼2 ≤ 0.25 + 0.25𝛼1 ≤ 0.25 + 0.25 = 0.5. One can

see that in the new probstar Θ′, the predicate variable 𝛼2 has a new

upper bound of 0.5 instead of 1 as in the original probstar Θ.

4.3 Quantitative reachability algorithm
The quantitative reachability algorithm for computing the prob-

star reachable sets of a layer and their associated probability is

presented in Algorithm 2. The algorithm performs the affine map-

ping operation on the probstar input set Θ using the layer’s weight

matrix𝑊 and bias vector 𝑏 (line 2). The obtained set Θ′ will be the
input to a sequence of stepReLU operations 𝑅𝑒𝐿𝑈𝑖 (lines 3 to 10).

Remind that a stepReLU operation may split a set into two new sets.

Therefore, a for loop is used to handle multiple inputs at a specific

stepReLU operation (lines 8, 9). After constructing the reachable

sets of the layer (line 10), we compute their associated probability

using Algorithm 1 (lines 12 to 14).

Algorithm 2 Quantitative reachability for a ReLU layer.

Inputs: 𝐿 = (𝑊,𝑏 ) , Θ = ⟨𝑐,𝑉 ,N, 𝑃, 𝑙,𝑢 ⟩ # A ReLU layer, a probstar input set

Output: 𝑅 # A tuple of reachable sets and their associated probabilities

1: procedure 𝑝 = quantitativeLayerReach(𝐿,Θ)
2: Θ′ = Θ.𝑎𝑓 𝑓 𝑖𝑛𝑒𝑀𝑎𝑝 (𝑊,𝑏 ) # affine mapping (Proposition 2)

3: 𝑛 = 𝐿.𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓 𝑁𝑒𝑢𝑟𝑜𝑛𝑠 # number of neurons

4: �̃� = Θ′

5: for i from 1 to n do
6: 𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ (�̃�) # number of probstars

7: 𝑂 = [ ]
8: for j from 1 to m do # handling multiple inputs at 𝑅𝑒𝐿𝑈𝑖

9: 𝑂 ← 𝑅𝑒𝐿𝑈 (�̃� 𝑗 , 𝑖 )
10: �̃� = 𝑂

11: 𝑚 = 𝑙𝑒𝑛𝑔𝑡ℎ (�̃�) , 𝑅 = ( )
12: for j from 1 to m do
13: 𝑝 𝑗 = 𝑔𝑒𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (�̃� 𝑗 ) # Algorithm 1

14: 𝑅 ← (�̃� 𝑗 , 𝑝 𝑗 )
15: return 𝑅

16: procedure �̃� = ReLU(Θ̃, 𝑖) # stepReLU operation

17: 𝑙𝑏𝑖 ,𝑢𝑏𝑖 = Θ̃.𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐵𝑜𝑢𝑛𝑑𝑠 (𝑖 ) # Proposition 5

18: if 𝑙𝑏𝑖 ≥ 0 then
19: �̃� = Θ̃
20: if 𝑢𝑏𝑖 ≤ 0 then
21: �̃� = Θ̃.𝑟𝑒𝑠𝑒𝑡𝑅𝑜𝑤 (𝑖 ) # 𝑦 [𝑖 ] = 𝑅𝑒𝐿𝑈 (𝑥 [𝑖 ] ) = 0

22: if 𝑙𝑏𝑖 < 0 & 𝑢𝑏𝑖 > 0 then
23: 𝑥𝑚𝑖𝑛 = Θ̃.𝑔𝑒𝑡𝑀𝑖𝑛 (𝑖 ) # get optimal lower bound (Proposition 4)

24: if 𝑥𝑚𝑖𝑛 ≥ 0 then
25: �̃� = Θ̃
26: else if 𝑥𝑚𝑖𝑛 < 0 then
27: 𝑥𝑚𝑎𝑥 = Θ̃.𝑔𝑒𝑡𝑀𝑎𝑥 (𝑖 ) # get optimal upper bound (Proposition 4)

28: if 𝑥𝑚𝑎𝑥 ≤ 0 then
29: �̃� = Θ̃.𝑟𝑒𝑠𝑒𝑡𝑅𝑜𝑤 (𝑖 ) # 𝑦 [𝑖 ] = 𝑅𝑒𝐿𝑈 (𝑥 [𝑖 ] ) = 0

30: else
31: �̃�1 = Θ̃.𝑎𝑑𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑥 [𝑖 ] ≥ 0) # Proposition 3

32: �̃�1 .𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐵𝑜𝑢𝑛𝑑𝑠 ( )
33: �̃�2 = Θ̃.𝑎𝑑𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑥 [𝑖 ] ≤ 0) # Proposition 3

34: �̃�2 .𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐵𝑜𝑢𝑛𝑑𝑠 ( )
35: �̃�2 .𝑟𝑒𝑠𝑒𝑡𝑅𝑜𝑤 (𝑖 )
36: �̃� ← [�̃�1, �̃�2 ]
37: return �̃�

Complexity and output reachable set probability. The fol-
lowing lemma extends the complexity and output reachable set

probability of a layer to an 𝑁 -neurons feed-forward neural net-

work F .

Lemma 6. Given an 𝑁 -neurons feed-forward ReLU neural network
F and a probstar input set Θ, the exact output reachable set O of the
network may contain multiple probstars O = {𝑂1,𝑂2, . . . ,𝑂𝑀 } in
which𝑀 ≤ 2

𝑁 and P(Θ) = P(O) = P(𝑂1) +P(𝑂2) + · · ·+P(𝑂𝑀 ).

5 QUANTITATIVE VERIFICATION
Quantitative verification of ReLU networks can be done precisely

or overapproximately. In the exact quantitative verification, we

construct all the probstar output reachable sets of the network

and compute the exact total probability 𝑝𝑣 of the output reachable

sets intersecting with the region defined by the specification. In

addition, complete set of counterexamples C is constructed. In ap-

proximate quantitative verification, the users provide a probability
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threshold 𝑝 𝑓 (0 < 𝑝 𝑓 ≪ 1) to filter out all the reachable sets (at

each layer) whose probabilities are smaller than the threshold. The

total probability of neglected reachable sets is combined with the

total probability of remaining output reachable sets violating the

specification to obtain the lower bound p𝑣 and upper bound 𝑝𝑣 of the
probability of the network violating its specification. Additionally,

a partial set counterexamples may be obtained.

Handling the tail. Qualitative verification methods work only

with bounded input sets. Unbounded input sets lead to unbounded

output sets that are difficult and expensive to compute. In other

words, computing exact output reachable sets of a ReLU network

with unbounded input sets is computationally intractable in gen-

eral. In our quantitative verification, we can provide a probabilistic

guarantee for a neural network for the entire unbounded input

space. We use a 1-dimensional example to illustrate the idea. In

this example, suppose we are considering a bounded input set

𝑋 = {𝑥 | ` − 3𝜎 ≤ 𝑥 ≤ ` + 3𝜎}. The probability of this input set is

P(𝑋 ) = 0.9973. Assume that we verify a network F given the input

set Θ ≡ 𝑋 , and a specification 𝑠𝑝𝑒𝑐 ≜ 𝐻𝑦 ≤ 𝑔, and the quantitative

verification algorithm returns the lower bound p𝑣 and upper bound

𝑝𝑣 of the probability of violation (note that in the exact verifica-

tion, we have p𝑣 = 𝑝𝑣 = 𝑝𝑣 ). Now, what we want to know is the

probability of violation for all −∞ ≤ 𝑥 ≤ ∞ (i.e., entire unbounded

input space). We can decompose the entire unbounded input space

into two sets 𝑋 and 𝑋 (note that 𝑋 is unbounded and non-convex).

We have P(𝑋 ) + P(𝑋 ) = 1 → P(𝑋 ) = 1 − 0.9973 = 0.0027. One

can see that the maximum probability of the network F violating

its specification given the input set 𝑋 is P(𝑋 ), i.e., all inputs in 𝑋

make the network violate the specification. Therefore, the maxi-

mum probability of the network F violating its specification for

all −∞ ≤ 𝑥 ≤ ∞ is 𝑝𝑣 + 1 − P(𝑋 ) = 𝑝𝑣 + 0.0027. Similarly, the

minimum probability of the network violating its specification is

p𝑣 , i.e., optimistically, none of inputs inside 𝑋 are counterexamples.

Quantitative verification algorithms. Our quantitative verifi-
cation algorithm is described in Algorithm 3. If the filtering proba-

bility 𝑝 𝑓 = 0, then the algorithm is the exact quantitative verifica-

tion. If 𝑝 𝑓 > 0, then the algorithm becomes the overapproximate

quantitative verification. At each layer, the algorithm computes the

probabilistic reachable sets (lines 6-8), filters out all reachable sets

whose probabilities are smaller than 𝑝 𝑓 (line 12), and updates the

total probability of filtered reachable sets (line 13). The reachable

sets of the last layer are the output reachable sets of the network

(line 14). The intersection of output reachable sets of the network

with the specification and its probability are computed (lines 17,

18). If this probability is larger than zero, the total probability of vi-

olation is updated (line 19), and a counterexample set is conducted

(lines 20, 21) similar to [30]. Additionally, the unsafe output set

is stored (line 23). Then, we compute the lower bound and upper

bound of the probability of violation (lines 22 to 25) and the mini-

mum and maximum probability of violation when considering the

entire infinite input space (lines 26). Finally, we return the output

reachable sets, unsafe output sets, counterexample sets, and the

bounds of the probability of violation (line 27).

Soundness and Completeness. The soundness and complete-

ness of our quantitative verification algorithm are described in the

following lemmas.

Algorithm 3 Quantitative verification of a ReLU network.

Inputs: F = {𝐿𝑖 },Θ, 𝑝𝑓 # Network, input set, filtering probability

𝑠𝑝𝑒𝑐 = (𝐻,𝑔) # specification: 𝐻𝑦 ≤ 𝑔

Output: R, ˜R, C, p𝑣 , 𝑝𝑣 , 𝑝𝑚𝑖𝑛
𝑣 , 𝑝𝑚𝑎𝑥

𝑣 # Output reachable set,

# unsafe output set, counterexample set, bounds of violating probability

1: procedure 𝑝𝑣 , C = quantitativeVerify(F,Θ, 𝑝𝑓 , 𝑠𝑝𝑒𝑐)

2: 𝑛 ← F.𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓 𝐿𝑎𝑦𝑒𝑟𝑠

3: 𝐼 = Θ # probstar input sets to each layer

4: R = ( ) # reachable sets and their associated probability

5: 𝑝𝑖𝑔𝑛𝑜𝑟𝑒𝑑 = 0 # total probability of filtered reachable sets

6: for i from 1 to n do # layer reachability

7: O𝑖 = [ ] # output set of 𝑖𝑡ℎ layer

8: for j from 1 to length(I) do # each layer process multiple inputs

9: 𝑀 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒𝐿𝑎𝑦𝑒𝑟𝑅𝑒𝑎𝑐ℎ (𝐿𝑖 , 𝐼 𝑗 )
10: for k from 1 to length(M) do
11: (𝑅𝑘 , 𝑝𝑘 ) ← 𝑀 [𝑘 ]
12: if 𝑝𝑘 ≥ 𝑝𝑓 then R ← (𝑅𝑘 , 𝑝𝑘 ) , O𝑖 ← 𝑅𝑘 # filtering

13: else 𝑝𝑖𝑔𝑛𝑜𝑟𝑒𝑑 = 𝑝𝑖𝑔𝑛𝑜𝑟𝑒𝑑 + 𝑝𝑘
14: 𝐼 = O𝑖
15:

¯R = [ ]
16: for i from 1 to length(R) do
17: (𝑅𝑖 , 𝑝𝑖 ) ← R[𝑖 ]
18: �̃�𝑖 = 𝑅𝑖 .𝑎𝑑𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝐻𝑦 ≤ 𝑔) # intersect with specification

19: �̃�𝑖 = 𝑔𝑒𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (�̃�𝑖 )
20: if �̃�𝑖 > 0 then 𝑝𝑣 = 𝑝𝑣 + �̃�𝑖 # update probability of violation

21: 𝐶𝑖 = ⟨Θ.𝑐,Θ.𝑉 ,Θ.N, �̃�𝑖 .𝑃, �̃�𝑖 .𝑙, �̃�𝑖 .𝑢 ⟩ # counterexample set

22: C ← 𝐶𝑖

23:
˜R ← �̃�𝑖

24: if 𝑝𝑓 = 0 then
25: 𝑝𝑣 = 𝑝𝑣 , p𝑣 = 𝑝𝑣
26: else
27: p𝑣 = 𝑝𝑣 , 𝑝𝑣 = 𝑝𝑣 + 𝑝𝑖𝑔𝑛𝑜𝑟𝑒𝑑
28: 𝑝𝑚𝑖𝑛

𝑣 = p𝑣 , 𝑝
𝑚𝑎𝑥
𝑣 = 𝑝𝑣 + 1 − P(Θ)

29: return R, ˜R, C, p𝑣 , 𝑝𝑣 , 𝑝𝑚𝑖𝑛
𝑣 , 𝑝𝑚𝑎𝑥

𝑣

Lemma 7 (Soundness). Given a ReLU network F , a bounded prob-
star input set Θ, and a specification 𝑠𝑝𝑒𝑐 ≜ 𝐻𝑦 ≤ 𝑔, the probability
of the network violating its specification for all inputs in the input set
satisfies p𝑣 ≤ 𝑝 ≤ 𝑝𝑣 , and the probability of the network violating its
specification for entire input space satisfies 𝑝𝑚𝑖𝑛

𝑣 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥
𝑣 , where

p𝑣, 𝑝𝑣, 𝑝
𝑚𝑖𝑛
𝑣 , 𝑝𝑚𝑎𝑥

𝑣 are the bounds obtained from Algorithm 3.

Lemma 8 (Completeness). The Algorithm 3 is complete when
the exact verification scheme is used to verify a ReLU network with a
given bounded probstar input set.

Remark 5.1. It is important to emphasize that the soundness and
completeness of the proposed quantitative verification algorithm can
be achieved under the assumption that the estimation of the prob-
ability of a probstar is precise (Algorithm 1). In practice, there is a
very tiny error (which is ignored in the analysis) in the probability
estimation caused by the Gaussian approximation of a Dirac Delta
distribution and the existing non-deterministic techniques [6, 13].

6 EVALUATION
Implementation. We implement our approach in a tool named

StarV (Star-based Verification tool) using python3. We use the

built-in Botev method [6] in the Scipy package to compute the

probability of a probabilistic star. In StarV, we support parallel

computation using the multiprocessing module to speed up the ver-

ification procedure. In this section, we first describe our approach

in detail using a tiny network and then analyze its performance
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on the well-known ACASXU networks [22], and the rocket lander

benchmark for SpaceEx Falcon 9 [37]. Our experiment is done on

a computer with the following configurations: Intel Core i7-10700

CPU @ 2.90GHz × 8 Processors, 63.7 GiB Memory, 64-bit Ubuntu

18.04.6 LTS OS.
1
.

We will use the following notations for our experiments: 𝑝 𝑓 is

the filtering probability, O is the number of output sets,US − O is

the number of unsafe output sets,𝑈𝑆 − 𝑃𝑟𝑜𝑏 −𝐿𝐵 and𝑈𝑆 − 𝑃𝑟𝑜𝑏 −
𝑈𝑆 are the lower bound and upper bound of the probability of

violation,𝑈𝑆 −𝑃𝑟𝑜𝑏 −𝑀𝑖𝑛 and𝑈𝑆 −𝑃𝑟𝑜𝑏 −𝑀𝑎𝑥 are the minimum,

and maximum unsafe probability of the network for the entire

infinite input space, 𝐼 −𝑃𝑟𝑜𝑏 is the input set’s probability,𝑉𝑇 is the

verification time in second.

6.1 Verifying a tiny network
We use a tiny network to describe our approach. The tiny network

has two inputs, two outputs, one ReLU layer, and one fully con-

nected output layer. The weights and biases for the ReLU and output

layers, respectively, are:

𝑊1 =


1 −2

−1 0.5

1 1.5

 , 𝑏1 =


0.5

1.0

−0.5

 , 𝑊2 =

[
−1 −1 1

2 1 −0.5

]
, 𝑏2 =

[
−0.2

−1.0

]
The input 𝑥 = [𝑥1, 𝑥2]𝑇 to the network belongs to a 2-dimensional

Gaussian distribution with the area of interest is −2 ≤ 𝑥1 ≤ 2

and −1 ≤ 𝑥2 ≤ 1, i.e., the input lower bound 𝑙𝑏𝑥 = [−2,−1]𝑇 and

the input upper bound 𝑢𝑏𝑥 = [2, 1]𝑇 . The mean of the Gaussian

distribution is chosen as ` = (𝑙𝑏𝑥 + 𝑢𝑏𝑥 )/2 = [0, 0]𝑇 . The standard
deviation of the distribution 𝜎 = [𝜎1, 𝜎2]𝑇 is chosen such that

` +𝑎×𝜎 = 𝑢𝑏𝑥 → 𝜎 = (𝑢𝑏𝑥 −`)/𝑎, where 𝑎 is a positive coefficient.

When 𝑎 increases, the probability of the inputs lying between their

lower and upper bounds of interest increases (see Figure ??). In this

case study, we choose𝑎 = 2.5 and thus,𝜎 = [0.8, 0.4]𝑇 . The variance
of the distribution is Σ = 𝑑𝑖𝑎𝑔(𝜎2

1
, 𝜎2

2
) = 𝑑𝑖𝑎𝑔(0.64, 0.16), where

𝑑𝑖𝑎𝑔 states for a diagonal matrix. We are interested in verifying the

network against its unsafe specification defined by 𝑠𝑝𝑒𝑐 ≜ 𝑦1 ≤ −2.

Compute and visualize output reachable sets. We represent

the input set 𝐼 as a probstar and propagate it through the network

using Algorithm 2 to construct the probabilistic output reachable

sets. The reachability time is approximately 0.09 seconds, and the

output set consists 6 probstars, depicted in Figure 3a. The total

probability of the output reachable sets equals the input set’s prob-

ability P(𝐼 ) ≈ 0.975316. Verifying the network. The verification
results of the tiny network are presented in Table 1. We can see

that the number of probstar output sets reduces when the filtering

probability increases, i.e., 𝑝 𝑓 . With 𝑝 𝑓 = 0.1, the number of probstar

output sets is 3 compared to 6 with exact verification (𝑝 𝑓 = 0). In

the exact verification, the lower bound and upper bound of unsafe

probability (𝑈𝑆 − 𝑃𝑟𝑜𝑏 − 𝐿𝐵 and 𝑈𝑆 − 𝑃𝑟𝑜𝑏 − 𝑈𝐵) are the same

(p𝑣 = 𝑝𝑣 = 0.420977). This is also the minimum probability of

violation for the entire input space, i.e., US-Prob-Min 𝑝𝑚𝑖𝑛
𝑣 . With

𝑝 𝑓 = 0.1, the estimated lower bound and upper bound of unsafe

probability are 0.373799 and 0.556148. One can see that using the

approximate verification scheme obtains a wider range of unsafe

1
All experimental results are reproducible using StarV: https://github.com/V2A2/StarV

probability than the exact verification scheme. This is also true for

the estimation of the minimum and maximum unsafe probability

for the entire input space. As we filter out some reachable sets

with small probabilities in verification, the total verification time

(𝑉𝑇 ) is smaller than the one in the exact verification (0.127659 vs.

0.193592). Note that 4 cores are used for the verification of this case

study. Our algorithm also returns the exact/partial unsafe output

set and counterexample set, as depicted in Figures 3b and 3c (for

exact verification).

6.2 Verifying ACASXu Networks
The ACASXu networks [22] are the well-known benchmarks for

comparing the performance of qualitative verification approaches.

In this paper, we are interested in quantitative verification for

ACASXu networks. We want to compute the probability of a net-

work violating its properties. Therefore we consider properties

(𝑃2, 𝑃3, and 𝑃4) and networks that return unsafe results in qualita-

tive verification [3]. Detailed information on the properties and the

networks can be found in [17, 22]. Similar to the tiny network case

study, we use the lower bound 𝑙𝑏 and upper bound𝑢𝑏 vectors of the

inputs corresponding to each property to create probabilistic input

sets for our quantitative verification. We choose the mean of the

Gaussian distribution of the inputs as ` = (𝑙𝑏 + 𝑢𝑏)/2 and the stan-

dard deviation 𝜎 = (𝑢𝑏−`)/𝑎, where 𝑎 = 3.0. Table 2 represents the

quantitative verification results of unsafe ACASXu networks under

different safety properties. The quantitative verification results for

all networks can be found in Table 6 the Appendix.

Timing performance and conservativeness. Our quantita-
tive verification algorithm successfully computes the bounds of

the probability of violation of all unsafe networks (90 verification

queries in total) in approximately 24 hours, with 8 cores used to

speed up the verification time. Verification time varies for differ-

ent networks and different properties. The maximum time for a

verification query is less than 2 hours, while the minimum verifica-

tion time is around 3 seconds. Table 2 shows that the approximate

quantitative verification scheme can significantly reduce the ver-

ification time for a network with many output sets with wider

probability bounds on the violation. For example, in property 2

and network 1-6, the total verification time of the exact scheme

is 1424 seconds, while the approximate scheme finishes in 206.77

seconds (≈ 7× faster). In this case, the approximate scheme obtains

a pretty tight lower bound of the probability of violation compared

to the exact scheme (2.80807𝑒 − 06 vs. 1.87224𝑒 − 05). However, its

obtained upper bound of the probability of violation is conservative

(0.0528349 vs. 1.87224𝑒 − 05). In the case that the number of output

sets is small, the approximate scheme takes a longer time than the

exact scheme, e.g, property 4 and network 1-9. This is because esti-

mating the probabilities of intermediate probstars in reachability

constitutes significance in the total verification time. Interestingly,

for properties 3 and 4, the whole input sets associated with the

properties are counterexample sets, i.e., all output sets violate the

safety properties. We note that the estimation of probability bounds

may change slightly time-to-time because of the non-determinism

nature of current techniques [6, 13]. Therefore, it is not surprising

that the repeatability of this work may produce slightly different

results.
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(a) Output set. (b) Unsafe output set. (c) Counter input set.

Figure 3: Tiny Networks’ output set, unsafe output set, and counter input set.

𝑝 𝑓 O US − O C US-Prob-LB US-Prob-UB US-Prob-Min US-Prob-Max I-Prob VT
0 6 6 6 0.420977 0.420977 0.420977 0.445661 0.975316 0.193592

0.1 3 3 3 0.373799 0.556148 0.373799 0.580832 0.975316 0.127659

Table 1: Verification results of the tiny network.

Prop Net 𝑝 𝑓 O US − O C US-Prob-LB US-Prob-UB US-Prob-Min US-Prob-Max I-Prob VT
2 1-6 0 376352 80621 80621 1.87224e-05 1.87224e-05 1.87224e-05 0.013445 0.986574 1424

2 1-6 1e-05 4953 2649 2649 2.80807e-06 0.0528349 2.80807e-06 0.0662612 0.986574 206.772

2 2-2 0 471882 320909 320909 0.0353886 0.0353886 0.0353886 0.0488149 0.986574 2102.47

2 2-2 1e-05 6093 4831 4831 0.0195646 0.0940341 0.0195646 0.10746 0.986574 298.999

2 2-9 0 909914 297873 297873 0.000997678 0.000997678 0.000997678 0.014424 0.986574 4561.2

2 2-9 1e-05 6895 4325 4325 0.000255108 0.106958 0.000255108 0.120384 0.986574 504.504

2 3-1 0 252573 78561 78561 0.0445325 0.0445325 0.0445325 0.0579588 0.986574 1086.38

2 3-1 1e-05 4753 2620 2620 0.0305 0.0726312 0.0305 0.0860575 0.986574 202.726

2 3-6 0 1003429 120329 120329 0.0335763 0.0335763 0.0335763 0.0470026 0.986574 5224.43

2 3-6 1e-05 5485 432 432 0.0207834 0.106866 0.0207834 0.120292 0.986574 451.958

2 3-7 0 475107 54475 54475 0.00404731 0.00404731 0.00404731 0.0174736 0.986574 2598

2 3-7 1e-05 5666 113 113 0.00231884 0.0749959 0.00231884 0.0884222 0.986574 331.1

2 4-1 0 402334 263892 263892 0.00231247 0.00231247 0.00231247 0.0157388 0.986574 1870.66

2 4-1 1e-05 5771 4743 4743 0.0010368 0.0716188 0.0010368 0.0850451 0.986574 305.28

2 4-7 0 651996 378735 378735 0.0409502 0.0409502 0.0409502 0.0543764 0.986574 3407.83

2 4-7 1e-05 5940 4476 4476 0.0207855 0.108069 0.0207855 0.121495 0.986574 418.933

2 5-3 0 125749 87 87 1.81747e-09 1.81747e-09 1.81747e-09 0.0134263 0.986574 418.844

2 5-3 1e-05 4130 7 7 1.58834e-09 0.032622 1.58834e-09 0.0460483 0.986574 139.698

3 1-7 0 500 500 500 0.976871 0.976871 0.976871 0.990298 0.986574 3.59073

3 1-7 1e-05 190 190 190 0.980113 0.980432 0.980113 0.993858 0.986574 4.75383

4 1-9 0 471 471 471 0.989244 0.989244 0.989244 1 0.989244 3.41508

4 1-9 1e-05 142 142 142 0.979634 0.980022 0.979634 0.990777 0.989244 3.6162

Table 2: Quantitative verification results for unsafe ACASXu networks.

Comparing with a sampling-based method.We compared

ourmethodwith a simpleMonte Carlo (MC) approachwith different

sample sizes on the network 1-2 for property 2. The MC approach

obtains very different unsafe probabilities for different sample sizes.

When the number of samples is small (N < 10,000), the MC can not

find counterexamples which results in zero probability of violation.

When N is larger, the MCmethod obtains larger unsafe probabilities

compared to our result. For example, when 𝑁 = 10
5
, the unsafe

probability obtained by the MC approach is 6× 10
−5

which is much

larger than our result (1.3925 × 10
−5
) (see appendix). To make

the MC method result converge to our exact result, a very large

number of samples is required, which increases the verification

time significantly. In our experiment, when the sample size = 10
8
,

the program got killed due to a memory issue. We can see that our

approach significantly outperforms the simple MC approach.

Figure 4: Rocket lander benchmark.

6.3 Verifying the rocket lander controllers
The rocket lander benchmark, shown in Figure 4, is a vertical rocket

landing model simulating SpaceX’s Falcon 9 first-stage rocket. It is

based on the lunar lander presented in [7]. The rocket is controlled

by themain engine thruster at the bottomwith an actuated joint and

two nitrogen thrusters attached to the top sides. The main thruster
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produces power 𝐹𝐸 in the range of [0, 1] with a relative angle to the

rocket body 𝜑 . The side thrusters produce power 𝐹𝑆 in the range of

[−1, 1] in which −1 indicates that the right thruster has full throttle

and the left thruster is turned off while 1 indicates the opposite.

The goal is to control the rocket from a certain height to land in the

center of the barge (the black rectangle) on the sea (the blue rectan-

gle) without falling or crashing. To do that, we need to control the

rocket’s velocity and the lateral angle \ through the thrusters. There

are three actions that need to be learned, the main engine thruster

𝐹𝐸 , its angle 𝜑 , and the side nitrogen thrusters 𝐹𝑆 . These actions

are learned using reinforcement learning based on the observation

of the position x, y of the rocket relative to the landing center on

the barge, the velocity 𝑣𝑥 and 𝑣𝑦 of the rocket, its lateral angle \ , its

angular velocity𝜔 and the last three actions advisory 𝐹 ′
𝐸
, 𝐹 ′

𝑆
, 𝜑′,, i.e.,

the observation state vector is [𝑥,𝑦, 𝑣𝑥 , 𝑣𝑦, \, 𝜔, 𝐹 ′𝐸 , 𝐹
′
𝑆
, 𝜑′]𝑇 . Several

agents are learned to control the rocker using the Deep Determin-

istic Policy Gradient (DDPG) [19] approach, which combines the

Q-learning with Policy gradients. The learned agents are feedfor-

ward neural networks with 9 inputs, 3 outputs, and 5 hidden layers

with 20 ReLU neurons per layer. Two safety properties are defined

for the agents in the following [37]. The initial conditions associated

with the safety properties are presented in the appendix.

• Property 𝑃1: When −20
◦ ≤ \ ≤ −6

◦, 𝜔 < 0, 𝜑′ ≤ 0, 𝐹 ′
𝑆
≤ 0,

the desired action should be 𝜑 < 0 or 𝐹𝑆 < 0, which is the

scenario where the agent should always prevent the rocket

from tilting to the right.

• Property 𝑃2: When 6
◦ ≤ \ ≤ 20

◦, 𝜔 ≥ 0, 𝜑′ ≥ 0, 𝐹 ′
𝑆
≥ 0,

the desired action should be 𝜑 > 0 or 𝐹𝑆 > 0, which is the

scenario where the agent should always prevent the rocket

from tilting to the left.

The verification results for two rocket networks are presented in

Table 3. One can see that the two networks do not violate the second

safety property, i.e., 𝑃2. However, they both violate the first safety

property with a very small probability. As the input space is large

compared to the ACASXu case study, the exact verification scheme

produces a very large number of output sets and has a pretty large

verification time, e.g., the net 0 under the second property produces

more than 2 million probstars output sets, but none of them violate

the safety property.

7 RELATEDWORKS
Qualitative Verification of DNNs. Qualitative verification of

DNNs is an active research area. Notable sound and complete verifi-

cation methods include Satisfiability Modulo Theory (SMT) [16, 17],

optimization using mixed integer linear programming encoding

[21], star-based [2, 30, 33], and facet-vertex incidence matrix [36],

symbolic interval [35]. Although these methods provide both sound-

ness and completeness, they are usually slow and not scalable to deal

with large networks and large input space. Many over-approximate

verification approaches have been proposed to overcome this draw-

back, such as MILP [9], semidefinite programming [11], abstract

interpretation [24, 27, 28, 34, 39], overapproximate star reachability

[29, 31], input quantization [15], and relaxed convex program [18],

just to name a few.

Quantitative verification of DNNs. Quantitative verification
of DNNs is an important topic that has not been explored much in

the verification community. A few research papers focused on bi-

nary neural networks with quantized discrete input space [5, 26, 40].

Working with quantized discrete input spaces and sign activation

functions makes quantitative verification less challenging, as the

number of violations of network outputs can be counted. To the

best of our knowledge, there is only one quantitative verification

for ReLU DNNs with continuous input space [10]. In this work, the

authors use an ellipsoid to represent the input set with Gaussian

random variables. This ellipsoidal input set is propagated through

the network to construct an overapproximate output ellipsoid with

computable confidence by relaxing the ReLU activation functions

using affine and quadratic constraints. In our approach, we con-

sider a general input space with linear constraints on Gaussian

random variables. We propose an approach to precisely propagate

the polytope probabilistic input set through the network without

any relaxation for the ReLU activation function. Due to this, we

can accurately estimate the lower bound and upper bound of the

probability of a ReLU network violating its property. Interestingly,

the approach proposed in this paper was inspired by the recent

work in learning the density distribution of autonomous systems

[23]. However, instead of quantifying the risk of a black-box au-

tonomous system, we focus on quantifying the risk of deep ReLU

networks.

In [14], the authors proposed a verification approach for neural

network control systems (NNCSs) using a custom neural network

architecture. This architecture encoded an associated signal tem-

poral logic formula as part of the network, allowing reachability

analysis methods to be utilized for computing robustness of the

formula. We emphasize that our work can be extended to NNCSs,

with the advantage that the NN architecture does not need to be

modified to a specific form. Furthermore, our probabilistic treat-

ment of inputs enables reasoning over statistics such as risk of

failure, which is not possible in the deterministic setting or without

using sampling [38].

8 CONCLUSION
This paper proposed a new quantitative verification approach for

ReLU networks using the probabilistic star concept, a new variant

of the well-known star set. Exact and approximate verification

schemes have been proposed and evaluated using the well-known

ACASXu networks and recent rocket landing benchmarks. The

experiments show that our approach is promising for verifying

neural network controllers in the real world at design time. In the

future, we will implement the proposed approach in a depth-first

search manner [2] to reduce memory consumption in the analysis.

More importantly, based on the concept of probstar, we will develop

ProbStar temporal logic, a new specification language for specifying

the temporal behavior of autonomous systems that is suitable for

quantitative verification using star reachability.
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APPENDIX
Lemma 7’s proof
Proof. When the exact verification scheme is used, i.e., 𝑝 𝑓 = 0, we have p𝑣 = 𝑝𝑣 representing the exact total probability of the output

reachable sets violating the specification given the bounded input set Θ. When the approximate verification scheme is used, we filter out

some reachable sets in the analysis at each layer. In the worst case, all filtered reachable sets lead to a violation. Therefore, the upper bound

of the probability of violation is the sum of the total probability of filtered reachable sets and the remaining output sets that violate the

property (lines 13 and 25 in Algorithm 3), i.e., 𝑝 ≤ 𝑝𝑣 for all inputs in the input set Θ. In the best case, all filtered reachable sets do not lead

to a violation. Therefore, the lower bound of the probability of violation is the total probability of the remaining output sets that violate the

property (line 25 in Algorithm 3), i.e., 𝑝 ≥ p𝑣 . The probability of an input that is outside of the input set Θ is 1 − P(Θ). In the worst case,

all inputs outside of the input set lead to a violation. This means the maximum probability of the network violating its property for the

entire input space is 𝑝𝑣 + 1 − P(Θ). In the best case, all inputs outside of the input set do not lead to a violation. Therefore, the minimum

probability of the network violating its property for the entire input space is 𝑝𝑚𝑖𝑛
𝑣 = p𝑣 .

Lemma 8’s proof
Proof. The exact scheme uses the exact output reachable sets of the network for verification and conducts the exact counterexample input

sets when the network violates its property (lines 19-21). As the counterexample input set shares the same constraints with the violated

output set (lines 17 and 20), the total probability of the counterexample input sets equals the total probability of violated output sets.

Rocket lander initial condition

𝑙𝑏1 (𝑃1) : [−0.2, 0.02,−0.5,−1.0,−20𝜋/180,−0.2, 0.0, 0.0, 0.0,−1.0,−15𝜋/180]𝑇
𝑢𝑏1 (𝑃1) : [0.2, 0.5, 0.5, 1.0,−6𝜋/180,−0.0, 0.0, 0.0, 1.0, 0.0, 0𝜋/180]𝑇
𝑙𝑏2 (𝑃2) : [−0.2, 0.02,−0.5,−1.0, 6𝜋/180, 0.0, 0.0, 0.0, 0.0, 0.0, 0𝜋/180]𝑇
𝑢𝑏2 (𝑃2) : [0.2, 0.5, 0.5, 1.0,−6𝜋/180,−0.0, 0.0, 0.0, 1.0, 0.0, 0𝜋/180]𝑇

Table 4: Initial conditions for the rocket lander benchmark.

N-samples US-Prob N-cores VT
10000 0 1 0.19

10000 0 4 0.16

100000 6e-05 1 1.29

100000 4e-05 4 0.7

10000000 2e-05 1 102.5

10000000 3.94e-05 4 40.30

Table 5: Verification results of ACAXu 𝑁12 on property 2 using the simple Monte Carlo approach.

ACASXU’s full verification results
Prop Net 𝑝𝑓 O US − O C US-Prob-LB US-Prob-UB US-Prob-Min US-Prob-Max I-Prob VT
2 1-2 0 45606 25496 25496 1.39251e-05 1.39251e-05 1.39251e-05 0.0134402 0.986574 130.55

2 1-2 1e-05 3190 2397 2397 3.65513e-06 0.0197698 3.65513e-06 0.0331961 0.986574 78.6622

2 1-3 0 114219 53 53 8.91096e-11 8.91096e-11 8.91096e-11 0.0134263 0.986574 416.127

2 1-3 1e-05 4155 0 0 0 0.0397379 0 0.0531642 0.986574 155.064

2 1-4 0 154449 50171 50171 2.16508e-05 2.16508e-05 2.16508e-05 0.0134479 0.986574 518.043

2 1-4 1e-05 4625 2727 2727 1.80812e-07 0.0469075 1.80812e-07 0.0603338 0.986574 180.598

2 1-5 0 122275 121 121 9.42565e-13 9.42565e-13 9.42565e-13 0.0134263 0.986574 348.196

2 1-5 1e-05 3447 0 0 0 0.0282999 0 0.0417262 0.986574 112.726

2 1-6 0 376352 80621 80621 1.87224e-05 1.87224e-05 1.87224e-05 0.013445 0.986574 1424

2 1-6 1e-05 4953 2649 2649 2.80807e-06 0.0528349 2.80807e-06 0.0662612 0.986574 206.772

2 2-1 0 193080 20366 20366 0.0171559 0.0171559 0.0171559 0.0305822 0.986574 636.495

2 2-1 1e-05 4709 224 224 0.00989434 0.0629621 0.00989434 0.0763884 0.986574 183.613

2 2-2 0 471882 320909 320909 0.0353886 0.0353886 0.0353886 0.0488149 0.986574 2102.47

2 2-2 1e-05 6093 4831 4831 0.0195646 0.0940341 0.0195646 0.10746 0.986574 298.999

2 2-3 0 194168 146328 146328 0.0511745 0.0511745 0.0511745 0.0646007 0.986574 707.727

2 2-3 1e-05 4779 4317 4317 0.0371155 0.0941519 0.0371155 0.107578 0.986574 182.177

2 2-4 0 114037 16610 16610 0.0198031 0.0198031 0.0198031 0.0332294 0.986574 362.199

2 2-4 1e-05 4183 257 257 0.0118976 0.047335 0.0118976 0.0607612 0.986574 140.13

2 2-5 0 677346 330546 330546 0.0487406 0.0487406 0.0487406 0.0621669 0.986574 3822.98

2 2-5 1e-05 6009 4840 4840 0.0303233 0.109871 0.0303233 0.123297 0.986574 407.668
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2 2-6 0 309365 190910 190910 0.0338494 0.0338494 0.0338494 0.0472757 0.986574 1313.9

2 2-6 1e-05 5475 4367 4367 0.0240279 0.0913298 0.0240279 0.104756 0.986574 249.787

2 2-7 0 679021 335393 335393 0.0622461 0.0622461 0.0622461 0.0756724 0.986574 3532.62

2 2-7 1e-05 6570 4927 4927 0.0405048 0.127336 0.0405048 0.140762 0.986574 452.762

2 2-8 0 585437 283782 283782 0.0427024 0.0427024 0.0427024 0.0561286 0.986574 2723.35

2 2-8 1e-05 5850 4566 4566 0.01958 0.0963161 0.01958 0.109742 0.986574 354.319

2 2-9 0 909914 297873 297873 0.000997678 0.000997678 0.000997678 0.014424 0.986574 4561.2

2 2-9 1e-05 6895 4325 4325 0.000255108 0.106958 0.000255108 0.120384 0.986574 504.504

2 3-1 0 252573 78561 78561 0.0445325 0.0445325 0.0445325 0.0579588 0.986574 1086.38

2 3-1 1e-05 4753 2620 2620 0.0305 0.0726312 0.0305 0.0860575 0.986574 202.726

2 3-2 0 181291 83950 83950 7.21491e-06 7.21491e-06 7.21491e-06 0.0134335 0.986574 727.189

2 3-2 1e-05 4776 3586 3586 2.94061e-20 0.0422196 2.94061e-20 0.0556459 0.986574 174.612

2 3-4 0 133749 64192 64192 0.0175945 0.0175945 0.0175945 0.0310208 0.986574 402.029

2 3-4 1e-05 4286 3088 3088 0.0102766 0.0482358 0.0102766 0.0616621 0.986574 138.466

2 3-5 0 364948 150870 150870 0.0290188 0.0290188 0.0290188 0.0424451 0.986574 1437.35

2 3-5 1e-05 5444 4258 4258 0.017064 0.0816135 0.017064 0.0950397 0.986574 249.336

2 3-6 0 1003429 120329 120329 0.0335763 0.0335763 0.0335763 0.0470026 0.986574 5224.43

2 3-6 1e-05 5485 432 432 0.0207834 0.106866 0.0207834 0.120292 0.986574 451.958

2 3-7 0 475107 54475 54475 0.00404731 0.00404731 0.00404731 0.0174736 0.986574 2598

2 3-7 1e-05 5666 113 113 0.00231884 0.0749959 0.00231884 0.0884222 0.986574 331.1

2 3-8 0 472132 173273 173273 0.0154244 0.0154244 0.0154244 0.0288507 0.986574 2390.2

2 3-8 1e-05 5825 3655 3655 0.00776669 0.083846 0.00776669 0.0972723 0.986574 327.606

2 3-9 0 378803 157622 157622 0.0658148 0.0658148 0.0658148 0.0792411 0.986574 2106.61

2 3-9 1e-05 4269 621 621 0.0286698 0.0812411 0.0286698 0.0946674 0.986574 243.138

2 4-1 0 402334 263892 263892 0.00231247 0.00231247 0.00231247 0.0157388 0.986574 1870.66

2 4-1 1e-05 5771 4743 4743 0.0010368 0.0716188 0.0010368 0.0850451 0.986574 305.28

2 4-3 0 138104 95098 95098 0.0310807 0.0310807 0.0310807 0.044507 0.986574 519.745

2 4-3 1e-05 4379 3426 3426 0.021069 0.0627628 0.021069 0.076189 0.986574 155.109

2 4-4 0 143350 93342 93342 0.0199556 0.0199556 0.0199556 0.0333819 0.986574 519.065

2 4-4 1e-05 4536 3891 3891 0.0136079 0.0491365 0.0136079 0.0625628 0.986574 153.882

2 4-5 0 456909 332642 332642 0.0460214 0.0460214 0.0460214 0.0594477 0.986574 1924.95

2 4-5 1e-05 5269 4834 4834 0.0313368 0.0976121 0.0313368 0.111038 0.986574 285.253

2 4-6 0 1295596 262984 262984 0.0570912 0.0570912 0.0570912 0.0705175 0.986574 7513.59

2 4-6 1e-05 6128 552 552 0.0267682 0.13378 0.0267682 0.147206 0.986574 566.144

2 4-7 0 651996 378735 378735 0.0409502 0.0409502 0.0409502 0.0543764 0.986574 3407.83

2 4-7 1e-05 5940 4476 4476 0.0207855 0.108069 0.0207855 0.121495 0.986574 418.933

2 4-8 0 515006 227035 227035 0.0403188 0.0403188 0.0403188 0.0537451 0.986574 2477.66

2 4-8 1e-05 4909 399 399 0.0118739 0.0727673 0.0118739 0.0861936 0.986574 279.759

2 4-9 0 984139 426879 426879 0.00586402 0.00586402 0.00586402 0.0192903 0.986574 5048.59

2 4-9 1e-05 6388 5526 5526 0.00338763 0.0975845 0.00338763 0.111011 0.986574 517.496

2 5-1 0 201660 93486 93486 0.0277094 0.0277094 0.0277094 0.0411357 0.986574 823.441

2 5-1 1e-05 4733 3510 3510 0.0135803 0.0626989 0.0135803 0.0761252 0.986574 192.558

2 5-2 0 260741 24222 24222 0.0264194 0.0264194 0.0264194 0.0398457 0.986574 940.849

2 5-2 1e-05 4034 332 332 0.0134197 0.061674 0.0134197 0.0751002 0.986574 189.349

2 5-3 0 125749 87 87 1.81747e-09 1.81747e-09 1.81747e-09 0.0134263 0.986574 418.844

2 5-3 1e-05 4130 7 7 1.58834e-09 0.032622 1.58834e-09 0.0460483 0.986574 139.698

2 5-4 0 81317 46659 46659 0.0165051 0.0165051 0.0165051 0.0299314 0.986574 313.873

2 5-4 1e-05 3968 2804 2804 0.0119148 0.0434673 0.0119148 0.0568936 0.986574 124.415

2 5-5 0 212854 178899 178899 0.0458369 0.0458369 0.0458369 0.0592632 0.986574 913.435

2 5-5 1e-05 5120 4668 4668 0.0329328 0.0857782 0.0329328 0.0992045 0.986574 220.873

2 5-6 0 621782 480677 480677 0.0489121 0.0489121 0.0489121 0.0623384 0.986574 3026.36

2 5-6 1e-05 6554 6054 6054 0.0236352 0.116591 0.0236352 0.130017 0.986574 467.549

2 5-7 0 355708 191233 191233 0.066112 0.066112 0.066112 0.0795383 0.986574 1695

2 5-7 1e-05 5162 4115 4115 0.0329694 0.0963858 0.0329694 0.109812 0.986574 252.758

2 5-8 0 544678 441150 441150 0.051441 0.051441 0.051441 0.0648673 0.986574 2696.3

2 5-8 1e-05 6340 6002 6002 0.0272908 0.118407 0.0272908 0.131833 0.986574 391.85

2 5-9 0 619110 344368 344368 0.0531377 0.0531377 0.0531377 0.066564 0.986574 2756.88

2 5-9 1e-05 6130 4801 4801 0.0270714 0.123507 0.0270714 0.136933 0.986574 404.051

3 1-7 0 500 500 500 0.976871 0.976871 0.976871 0.990298 0.986574 3.59073

3 1-7 1e-05 190 190 190 0.980113 0.980432 0.980113 0.993858 0.986574 4.75383

3 1-8 0 393 393 393 0.986574 0.986574 0.987071 1 0.986574 3.2872

3 1-8 1e-05 167 167 167 0.986574 0.986574 0.988565 1 0.986574 4.87869

3 1-9 0 290 290 290 0.980768 0.980768 0.980768 0.994194 0.986574 2.75517

3 1-9 1e-05 61 61 61 0.986574 0.986574 0.993268 1 0.986574 2.60079

4 1-7 0 642 642 642 0.981887 0.981887 0.981887 0.992643 0.989244 3.68531

4 1-7 1e-05 236 236 236 0.989244 0.989244 0.989244 1 0.989244 4.08739

4 1-8 0 397 397 397 0.988684 0.988684 0.988684 0.999439 0.989244 3.00076

4 1-8 1e-05 121 121 121 0.987813 0.988125 0.987813 0.998881 0.989244 3.56073

4 1-9 0 471 471 471 0.989244 0.989244 0.989244 1 0.989244 3.41508

4 1-9 1e-05 142 142 142 0.979634 0.980022 0.979634 0.990777 0.989244 3.6162

Table 6: Full quantitative verification results for all unsafe ACASXu networks. Notations: 𝑝 𝑓 is the filtering probability, O is the
number of output sets,US − O is the number of unsafe output sets,𝑈𝑆 − 𝑃𝑟𝑜𝑏 − 𝐿𝐵 and𝑈𝑆 − 𝑃𝑟𝑜𝑏 −𝑈𝑆 are the lower bound and
upper bound of the probability of violation, 𝑈𝑆 − 𝑃𝑟𝑜𝑏 −𝑀𝑖𝑛 and 𝑈𝑆 − 𝑃𝑟𝑜𝑏 −𝑀𝑎𝑥 are the minimum, and maximum unsafe
probability of the network for the entire infinite input space, 𝐼 − 𝑃𝑟𝑜𝑏 is the input set’s probability,𝑉𝑇 is the verification time in
second.

13



14


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 ReLU networks
	2.2 Problem formulation

	3 Probabilistic Star
	3.1 Definition and properties
	3.2 Computing a probstar's probability

	4 Probabilistic Star Reachability
	4.1 Probabilistic Reachable set computation
	4.2 Reducing reachability time
	4.3 Quantitative reachability algorithm

	5 Quantitative Verification
	6 Evaluation
	6.1 Verifying a tiny network
	6.2 Verifying ACASXu Networks
	6.3 Verifying the rocket lander controllers

	7 Related Works
	8 Conclusion
	References

