
Towards Formal Specification Visualization for
Testing and Monitoring of Cyber-Physical Systems

Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanchi,
Yoshihiro Kobayashi, and Georgios Fainekos
Arizona State University, Tempe, AZ, U.S.A.

Email: {bhoxha,hbach,hyabbas,adokhanc,ykobaya,fainekos}@asu.edu

Abstract—One of the main challenges in software de-
velopment for safety-critical Cyber-Physical Systems (CPS)
is in achieving a certain level of confidence in the system
correctness and robustness. In order to perform formal
monitoring, testing and verification of CPS, the fully mod-
ular tool S-TALIRO is presented. The tool is designed for
seamless integration with the Model Based Design (MBD)
process in Matlab/Simulink™. S-TALIRO performs ro-
bustness guided Metric Temporal Logic (MTL) testing and
monitoring. Since writing specifications in MTL is an error
prone task that requires expert temporal logic users, a
graphical formalism for the development and visualization
of specifications is presented. The article provides an up-
to-date overview of S-TALIRO. It includes a discussion
on the benefits of the fully modular architecture and the
challenges encountered in its development.

I. INTRODUCTION

The need for testing, verification, and validation of
CPS has been reinforced by multiple accidents [25], [20]
over the years. One of the reasons software development
for these systems is very challenging is due to non-trivial
system interactions with the physical environment and
challenging execution requirements which are directly re-
lated to the system platform. As a result, in recent years,
there has been a trend to develop software for safety-
critical CPS using the Model Based Design (MBD)
paradigm. This approach allows testing and verification
at earlier design stages, when only models of the system
are available. To conduct system testing and verification,
automatic tools such as HyTech [19], SpaceEx [17],
CheckMate [31], FLOW [9], Breach [14], C2E2 [34] and
STRONG [12] have been developed.

S-TALIRO [5] is a tool for verification and testing of
CPS (Fig. 1). It is a modular software tool that is built
on the Matlab platform. S-TALIRO can analyze hybrid
automata, user defined functions (blackbox), arbitrary
Simulink models, hardware-in-the-loop, and processor-
in-the-loop models. S-TALIRO performs automated ran-

domized testing based on stochastic optimization tech-
niques. The requirements on the system are defined in
Metric Temporal Logic (MTL) [22].

MTL is a formalism that enables system engineers to
express complex design requirements in a formal logic.
One of the advantages of MTL is that it removes ambigu-
ities that are generally inherent in requirements expressed
in natural language. However, developing Metric Tempo-
ral Logic requirements necessitates formal mathematical
training that many users may not have time or willingness
to develop due to the steep learning curve. Therefore,
a more accessible graphical formalism is needed that
enables non-expert users to define such requirements.

The development of formal specifications through
graphical formalisms has been studied in the past. In [7],
the authors extend Message Sequence Charts and UML
2.0 Interaction Sequence Diagrams to propose a scenario
based formalism called Property Sequence Chart (PSC).
The formalism is mainly developed for specifications on
concurrent systems. In, [37], PSC is extended to Timed
PSC which enables the addition of timing constructs to
specifications.

In this paper, we present a graphical formalism for the
development of formal specifications specifically geared
towards CPS. The formalism enables the visualization
of a wide array of MTL specifications. It is designed
for use with systems and signals and enables both event
and time based specifications. This is the first time that
a visual formal language representation is attempted for
specifications over signals. A specification visualization
tool is in development based on the graphical formalism
presented in this work. The tool will be part of the
modular framework of S-TALIRO. The paper also pro-
vides an up-to-date overview of S-TALIRO and its new
functionalities. Finally, the paper discusses the modular
architecture of S-TALIRO, its benefits, and challenges
faced in the development of the framework.

1



MTL 
Specification  

Tool 

S-TaLiRo 
Graphical User Interface 

MTL Spec 𝜙, Model Σ, S-TaLiRo options 

S-TaLiRo 
Convex 

Optimization 

TaLiRo 

System Simulator Engine 
(hybrid automata, user defined function(blackbox), 

Simulink model, hardware-in-the-loop,  
processor-in-the-loop) 

𝑦(𝑖),𝑂(𝑝) distance 

robustness 
[𝜀1 … 𝜀𝐽] 

parameter 𝜃� 

observation  
trajectories 
[y1 …𝑦𝐽] 𝑥0,𝑢 𝑡  

Conformance 
Testing 

Runtime 
Verification 

observation  
trajectories 

[y1𝑦2] 

conformance 
distance 
[𝜏1, 𝜏2] 

observation trajectory 𝑦 

robustness 𝛾 

Minimum 
Robustness 

 
Minimum 
Expected 

Robustness 
 

Closest  
Conformance  

Distance 
 

Estimated 
Parameter 

Falsifying 
Trajectory 

Generate 
Input 

Signals 

next  
𝑥0, 𝑐𝑝� 

Robustness 
Computation 

Block 
SA CE … 

Stochastic 
Optimization Engine 

Hybrid 
Automata 

User Defined 
Functions 
(blackbox) 

Simulink 
Model 

Hardware-
in-the-loop 

Processor-
in-the-loop 

Fig. 1: The modular architecture of S-TALIRO. The major functionalities of the framework: specification falsification,
parameter estimation, conformance testing, and runtime verification. In the Stochastic Optimization Engine block,
SA (Simulated Annealing) and CE (Cross-Entropy) are stochastic optimization functions.

II. BACKGROUND

S-TALIRO is designed for seamless integration in the
model based design process (see Fig. 2). Once a model
has been developed, S-TALIRO will enable formalization
of the requirements and their analyses on the system.
In the following, we provide an overview of the fully
modular architecture and functionalities (presented in
Fig. 1). Table I provides an overview of the releases of
S-TALIRO and the main features added in each version.

A. Falsification

In general, the verification problem for MTL is un-
decidable [18]. Randomized testing methods can provide
an effective solution for checking properties of CPS. S-
TALIRO uses the robustness estimate, as presented in
[15], to cast the falsification problem of MTL formulas
as an optimization problem [1]. In brief, the falsification
method searches for counterexamples that prove that
the system does not satisfy the specification. Different
from boolean satisfaction notions, the robustness metric
represents the satisfaction of a system trajectory over
an MTL formula through a real number. While positive
values indicate satisfaction, negative values indicate that
the trajectory falsifies the MTL specification.

In general, the optimization problem cannot be pre-
sented in a closed functional form. Therefore, S-TALIRO

utilizes stochastic optimization techniques to search for
system inputs and initial conditions which result in the
global minimum robustness value. Although, it cannot
guarantee that the global minimum is found, it has
been shown in previous work [1] that the stochastic
optimization methods perform exceptionally well in prac-
tical applications. Due to the modular architecture of
S-TALIRO, users can easily incorporate their preferred
stochastic optimization functions. Once a falsifying tra-
jectory is found, it is presented to the user for further
analysis. For a more detailed presentation on the robust-
ness guided falsification problem, experimental results,
and applications see [16], [1], [29], [30].

B. Parameter Estimation

In Model Based Development (MBD) of CPS, often
times it is desirable to automatically infer specifications
that the system satisfies. Specifically, given a parametric
specification, system engineers would like to infer the
ranges of parameters for which the property holds on
the system. Such a property exploration framework can
be of great help to the practitioner. Not only will this
framework help system developers explore system prop-

2



erties, but in the initial design stages, also make sure that
the properties are well formalized and understood. 1 

Lab CPS 

S-Taliro support in the V-process 

Autocode Generation 

(with multi-core in mind) 

2 

System 

Calibration 

Formal 

Specifications 

Model Design 
Hardware In the 

Loop (HIL) 

System 

Deployment 

Informal 

Requirements 

3 

1 

2 

1. Formal specifications testing 

2. Conformance testing 

3. Runtime monitoring 

1 

S-TaLiRo 

support 

Fig. 2: S-TALIRO’s role in MBD: (1) Iterative de-
velopment and testing/verification of model [3]; (2)
Conformance testing between model and HIL/PIL or
tuned/calibrated model [2]; (3) Runtime monitoring of
formal requirements [13]

Specifications are presented in parametric MTL
(PMTL) formulas, which are MTL formulas where one
or more parameters are present in the temporal operators
or predicate parameters. An example of such a formula
is φpar = ¬(3[0,λ1](speed ≥ 100) ∧2(rpm ≤ λ2)).

In regards to the robustness metric, it has been noted
[6], [21] that some PMTL formulas are monotonically
non-increasing or non-decreasing. An example of such
a formula is φpar. As [λ1, λ2] increases, the robustness
value of the system cannot increase. For this class of
formulas, using robust semantics for MTL, the parameter
estimation problem can be converted into an optimization
problem which can be solved by utilizing stochastic
search methods.

The solution to the optimization problem provides a
range of values for the parameter such that the specifi-
cation is guaranteed not to hold on the system. In [36],
the theory of parameter estimation was presented. It was
shown that the framework can be used on the challenge
problem published by Ford in 2002 [10].

C. Expected Robustness for Stochastic Systems

Due to the inherent stochasticity in many Cyber-
Physical Systems (SCPS), there is a need for probabilistic
methods that enable system engineers to verify that
systems are robust and operate within set specifications.
Previously, Statistical Model Checking (SMC) for SCPS

was proposed [38], [11], where given a probability distri-
bution on the parameters of the SCPS and a specification,
SMC returns the probability that the specification holds
on the system. However, the probability of success/failure
is not always the most important factor in the analysis
of these systems. In some cases, if the system fails, not
only would system engineers like to know the probability,
but also the severity of the violation of the specification.
Furthermore, knowing the probability distribution of the
input parameter is not a trivial matter.

The current version of S-TALIRO, includes the Ex-
pected Robustness Guided Monte Carlo (ERGMC) algo-
rithm [3]. The method searches for a global minimizer
for the expected temporal logic robustness of SCPS. The
method utilizes recent results in stochastic optimization
[24] that, under some conditions, provide finite time
guarantees. Otherwise, the framework reduces to a best
effort automatic test generation scheme. The stochastic
optimization algorithm is guided by the MTL robustness
metric.

In [3], the performance of the framework is demon-
strated on a high fidelity SimuQuest [32] engine model.
Both ERGMC and the Bayesian SMC [38] methods are
included in the current version of S-TALIRO.

D. Runtime Verification

On-line monitoring enables users to observe the CPS
behavior in real-time [27], [8], [35], whereas in off-
line testing we need to stop the execution to check
the system’s behavior [26], [28]. In on-line monitoring,
an independent monitor can observe the system exe-
cution/simulation without intruding on its functionality
and it may report potential violations to a supervisor for
further control actions. Similarly, in on-line monitoring
of MTL robustness, the supervisor can also be informed
about how much the requirements are satisfied or violated
during simulation/execution.

Another application of on-line monitoring is in system
testing. For very long system executions it may be
problematic to store the whole execution trace for off-line
testing. In contrast, on-line monitoring does not need the
whole execution trace to verify the system. In addition,
for these cases, system testing is facilitated since the
on-line monitor can stop the simulation as soon as the
specification is falsified.

S-TALIRO provides an on-line monitoring tool as a
Simulink block that can run as an integrated module
in the simulation process [13]. The user provides the

3



S-TALIRO
ver. 1.1 [5]

S-TALIRO

ver. 1.2
S-TALIRO

ver. 1.3
S-TALIRO

ver. 1.4
S-TALIRO

ver. 1.5
S-TALIRO

ver. 1.6
S-TALIRO ver. 1.7

(under development)

Falsification
functionality

Cross-entropy
stochastic

optimization
function

Dynamic
programming
algorithm for

robustness
computation

Parameter estimation
for specfications with

one parameter

Signal control point
timing distribution can be

included in the search
space

Parameter
estimation for
specifications
with multiple

parameters

On-line Monitoring

ERGMC algorithm
for SCPS

Support for the Parallel
Computing toolbox

Local Descent
Method

Specification
Visualization Tool

Time robustness
computation

algorithm

Random number
generator seed can be

added for replication of
simulation results.

Interactive scripts for
generating m-scripts
for calling S-Taliro

Conformance testing
functionality

TABLE I: Release history of S-TALIRO with corresponding features.

required specification as a bounded future and/or un-
bounded past MTL formula. The monitor block checks
the Simulink generated traces with respect to the required
MTL specification. The monitor block then computes the
instant robustness estimate at each simulation step. The
output of the monitor block can be used on a feedback
loop in control applications.

E. Conformance testing

In model-based design, it is common for the design
and verification teams to develop several models of the
system, at different levels of abstraction, and for different
purposes. For example, an RTL description of a circuit
is used for functional verification, while a transistor-
level netlist is needed for accurate estimation of power
consumption. Some of these models may be derived
in an automatic manner, with associated guarantees.
Other models, however, are derived manually, and do
not have a clear guaranteed, relation to the source model.
For example, starting with a transistor schematic of an
analog circuit (which is the nominal model), the designer
creates a behavioral model of that circuit in a language
like Verilog (which we call the derived model). This
behavioral model is used in RTL simulation, and can be
used in formal property verification. The correspondence
between the two models exists only in the designer’s
mind, and in fact, might not be checkable formally
because of the floating-point values generated by the
analog circuit. Moreover, the analog designer may not be
an expert in, say, Verilog, or indeed in RTL simulation,
which may lead to issues in the Verilog behavioral model.

In such cases, it is important to get a quantitative
estimate of the closeness between the two models’ be-
haviors (i.e. their output waveforms), to understand how

verification results on the derived model (e.g. the Verilog
behavioral model) port over to the nominal model (e.g.
the transistor schematic), which is fed to the next step
in the design tool chain. In this manner, verification
results, including formal verification, may be obtained
on the simpler model, and ported over rigorously to the
nominal model (for which it may not have even been
possible to perform such verification). This closeness
should be measured in ‘space’, i.e. it should capture
the distance between the outputs’ signal values, and in
time, i.e. it must capture delays, dropped samples, and
other differences in timing characteristics between the
two models’ outputs. Finally, from the perspective of the
design or verification manager, it is important that the
existing design flow is perturbed as little as possible by
the measurement of this closeness. We call the process
of computing this closeness degree from output traces of
the systems conformance testing.

S-TALIRO defines and implements a rigorous close-
ness measure, satisfying the above criteria, between the
outputs of two systems [2]. Basing the closeness measure
only on the outputs of the systems means that we
only need the ability to simulate them, which is true
of most industrial settings, considering that simulation-
based verification remains a major component of indus-
trial verification flows. Thus conformance testing can be
integrated easily into most design and verification flows.

III. VISUAL SPECIFICATION TOOL

S-TALIRO enables on-line monitoring, testing, and
verification of CPS over MTL specifications. Developing
MTL specifications requires a level of mathematical
training that many users may not have. Furthermore,
the training required takes a certain amount of time and

4



Menu

Timeline

Templates

Zoom

At Least Once

At Least Once

Fig. 3: Overview of the graphical user interface of the MTL specification tool. The example shown represents the
MTL specification φ = 3[0,40]((speed > 80)→ 3[0,40](rpm > 4000)).

effort. This, coupled with the fact that writing formal
specifications is an error prone task has decreased the
willingness of the industry to utilize formal specifica-
tions. Therefore, making MTL accessible for widespread
use is an important problem.

The topic of capturing requirements through graphical
formalisms has been studied in the past [33], [4], [23],
[7], [37]. However, to the best of the authors’ knowledge,
the work presented here is the first attempt for CPS to
solve the accessibility problem of MTL specifications.
The problem is approached from both an event and time
based perspective. Both of these are necessary for reason-
ing over systems and signals. Consider the specification
3[0,5]((speed > 100) → 2[0,5](rpm > 4000)). It states
that if within the first 5 seconds, vehicle speed goes over
100, then from that moment on, the engine speed (rpm),
for the next 5 seconds, should always be over 4000. Here
both the sequence and timing of the events are of critical
importance.

One of the challenges faced in the development of the
graphical formalism was in maintaining the balance of
the expressiveness of the tool and its usability. To achieve
the latter, we placed several constraints on the types of
signals used. Specifically, the signals and requirements
are one dimensional which enables clear and structured

visualization on a two dimensional user interface.

In Fig. 3, the user interface of the tool is presented
along with its most critical components. The user in-
terface is composed of a menu, horizontal timeline,
rectangular blocks called templates, and a zoom scroll.
While the passage of time is represented horizontally, the
sequence of events is presented vertically. The formulas
are generated from templates as well as the connections
between them.

The main building blocks of the formalism are tem-
plates. These are used for defining temporal logic op-
erators, their timing intervals, and the expected signal
shape. The user starts with an empty template and a
setup assistant presents the user with a sequence of dialog
boxes that aid in the development of the template. The
process is context dependent where each option selection
leads to a potentially different set of options for the next
step.

The first step in the template definition process is to
define the temporal operator. Among the choices (and
their corresponding MTL symbols) are: Always (2), At
Least Once (3), Eventually Always (32), Repeatedly
Often and Finally (23), and now. The options available
enable users to define a wide range of specifications.
The following sections will present examples of the set

5



of formulas that can be generated using this graphical
formalism.

After the temporal operator is selected, the user
will set the timing bounds for it. Many users might
have difficulty defining timing bounds, especially for
specifications with temporal operators such as Eventually
Always (32) and Repeatedly Often and Finally (23).
To clarify the issue, the tool provides a fill-in-the-blanks
sentence format to the user. For example, if the operator
Eventually Always is selected, the user will have to
complete the following sentence with the timing bounds:
“Eventually, between and seconds, the signal
will become true, and from that point on, will stay true
in the next to seconds”. The set timing intervals
are visualized with color shaded regions in the template.

The next step in the process is in defining whether the
predicate will evaluate to true when the signal is above
or below a set threshold. For example, for the Always
(2) operator, a signal is selected that is either always
above or below a specified threshold. Once either option
is selected, various signals that fit the requirement are
automatically generated and presented visually. Instead
of drawing the signal, the user will select from one of
the generated options. Consider the following example:

Example 1: A specification from the fragment of
MTL formulas called Safety MTL specifications
is presented. Specifically, the specification φ1 =
2[0,36](rpm < 4000). The formula states that in the
next 36 seconds, engine speed should always be less
than 4000. The corresponding graphical formalism for
this formula is presented in Fig. 4. Note that, in regards
to the specification, the signal can be of any shape as
long as it is always below the 4000 threshold.

32 364 8 12 16 20 24 28

Fig. 4: Example 1: The graphical formalism for the Safety
MTL specification φ1 = 2[0,36](rpm < 4000).

Consider the following example for the At Least Once
(3) operator:

Example 2: A specification from the fragment of

MTL formulas called Reachability MTL specifica-
tions is presented. Specifically, the specification φ2 =
3[0,40](speed > 100). The formula states that eventually,
within the next 40 seconds, the vehicle speed will go
over 100. The corresponding graphical formalism for this
formula is presented in Fig. 5. Again, in regards to the
specification, the signal can be of any shape as long as
at one point, within the timing bounds of the temporal
operator, it is above the 100 threshold.

Fig. 5: Example 2: The graphical formalism for the
Reachability MTL specification φ2 = 3[0,40](speed >
100).

For the Eventually Always (32) operator, at least
once in the timing interval of the eventually operator,
the signal should go above the threshold and stay there
for the entire timing interval of the always operator. Two
types of shading will indicate the timing bounds of the
MTL operators.

Example 3: Consider the specification
φ3 = 3[0,30]2[0,10](speed > 100). The formula
states that at some point in the first 30 seconds, the
vehicle speed will go over 100 and stay above for 20
seconds. The corresponding graphical formalism for this
formula is presented in Fig. 6.

Fig. 6: Example 3: The graphical formalism for the MTL
specification φ3 = 3[0,30]2[0,10](speed > 100).

For the Repeatedly Often and Finally (23) operator,
an oscillating signal is presented where two types of
shading indicate the timing intervals for each MTL
operator. Consider the following example:

6



Example 4: The specification φ4 =
2[0,40]3[0,13](speed > 100) is presented. The formula
states that at every timestep of the simulation in the first
40 seconds, the speed will go over 100 within the next
13 seconds. The corresponding graphical formalism for
this formula is presented in Fig. 7. No matter how far
to the left or right the green shaded region is moved,
contained within the orange region, there is always a
point where the signal is above the threshold. Recall that
the signal is automatically generated so that it satisfies
the options previously selected.

Fig. 7: Example 4: The graphical formalism for the MTL
specification φ4 = 2[0,40]3[0,13](speed > 100).

The next important concept in this graphical formal-
ism is the relationship between templates.

First, the sequence relationship between two tem-
plates is presented. Assume that the first template is
already created. If another template is added below it,
then an order in the execution of the events is de-
fined. The second template is only considered if the
first template is evaluated to true. Formally, there is an
implication relationship from the first template to the
second. Consider the following example:

Example 5: The specification φ5 = (3[0,40](speed >
100)) → (3[0,30](rpm > 3000)) is presented. The
formula states that if, within 40 seconds, the vehicle
speed is above 100 then within 30 seconds from time 0,
the engine speed should be over 3000. The corresponding
graphical formalism for this formula is presented in Fig.
8.

A second type of relationship enables the user to
establish conjunction between two events. To achieve
this, templates can be grouped. This is indicated by a
bold black box. Doing so requires that both templates
evaluate to true. Consider the following example:

Example 6: Specification φ6 = (2[0,40](speed <
100)) ∧ (2[0,40](rpm < 4000)). The formula states that,
within 40 seconds, the vehicle speed should be less than

Fig. 8: Example 5: The graphical formalism for the
MTL specification φ5 = (3[0,40](speed > 100)) →
(3[0,30](rpm > 3000)).

100 and the engine speed should be under 4000. The
corresponding graphical formalism for this formula is
presented in Fig. 9.

The third type of template relationship enables the
user to establish relative timing between two templates.
Consider the following example:

Example 7: Specification φ7 = 3[0,40]((speed >
80) → 2[0,40](rpm > 4000)). Here, the nested spec-
ification 2[0,40](rpm > 4000) is evaluated every time
(speed > 80) is true. If at any point in time within
0 and 40 seconds there is a case where (speed >
80) → 2[0,40](rpm > 4000) then the formula evaluates
to true. This formula is represented in the formalism
with nested templates, otherwise referred to as parent
and child templates. The second template is tabbed and
connected to the first template using a green indicator. In
the GUI, such a nested template is initiated by clicking
on the signal of the parent template. The corresponding
graphical formalism is presented in Fig. 10.

The variety of templates and the connections between
them allow users to express a wide variety of specifi-
cations. The set of specifications that can be generated
from this graphical formalism is a proper subset of the set
of MTL specifications. Formally, the following grammar
produces the set of formulas that can be expressed by
the proposed graphical formalism:

7



S ::= ¬T | T
T ::= A | B | C
A ::= P | (P∧A) | (P⇒A)
B ::= 2ID | 3ID
C ::= 2I3ID | 3I2ID
D ::= (p⇒A) | (p∧A) | (p⇒B) | (p∧B)
P ::= p | 2Ip | 3Ip

where p is an atomic proposition. In practice, the atomic
propositions are automatically derived from the
templates.

IV. MODULARITY IN S-TALIRO

Significant emphasis on the development of S-
TALIRO is placed in preserving the modularity of its
many independent functions. In the following, we will
present some of the benefits attained from its modularity.

Among the benefits is the ability to interchange
parts or modules of the tool (see Fig. 1). For instance,
the stochastic optimizer functions are isolated from the
trajectory robustness computation functions. This allows
for flexibility in the choice of stochastic optimizers. In
fact, the user can utilize any other stochastic optimizer
with user defined cost function.

The modular architecture allows for a wider usability
of the tool’s independent functions. The trajectory ro-
bustness computation functions can be used to analyze
any trajectory (timed state sequence) over MTL speci-
fications. This allows for conducting complex analysis

Fig. 9: Example 6: The graphical formalism for the
MTL specification φ6 = (2[0,40](speed < 100)) ∧
(2[0,40](rpm < 4000)).

Fig. 10: Example 7: The graphical formalism for the
MTL specification φ7 = 3[0,40]((speed > 80) →
2[0,40](rpm > 4000)).

of not only CPS system trajectories but over any other
time series. For example, in order to test complex MTL
specifications over the Dow Jones Industrial Average, or
temperature levels in Tempe, Arizona.

Another useful module in the S-TALIRO architecture
is the system simulator function. This function allows for
seamless simulation of arbitrary Simulink models, user-
defined functions and blackbox models. In particular,
testing can be performed over processor-in-the-loop and
hardware-in-the-loop systems. Given a vector of input
control points, initial conditions and parameters, which
is the search space for the stochastic optimizer, its sub-
modules can generate various input signal interpolations
and simulate the system and output a trajectory. This
enables the automatic testing of the model.

Other benefits of the modular architecture are im-
proved maintainability and scalability. In both aca-
demic and industrial environments, modularity facilitates
tool functionality development through several smaller
projects focused on a particular functionality more than
on developing the whole system.

For example, the code that implements conformance
testing does not fall under the main S-TALIRO umbrella.
That is, it is separate from the MTL falsification core
of S-TALIRO. However, it does re-use several modules
from the main S-TALIRO code as-is, such as the system
simulator mentioned above, and various system classes
used to represent signals and the like.

V. DEVELOPMENT CHALLENGES

S-TALIRO is built on the Matlab platform. The
collaborative development process of S-TALIRO is fa-
cilitated by revision and version control systems such as

8



Apache Subversion (SVN) and git. These, in conjunction
with clients such as TortoiseSVN and TortoiseGit enable
a convenient revision and version control in the Windows
OS environment.

S-TALIRO is developed in an academic environment
with twelve developers through the years. In that period,
the tool has been released several times (see Table I).
To maintain high quality code with high performance,
techniques such as peer review are utilized. Not only
does this help with the quality of the code, but also helps
the developers obtain knowledge on other modules of the
framework. It helps maintain proper documentation and
helps increase developer skills.

Since the tool has been in development over several
years, a number of Matlab commands have been dep-
recated and removed from use in newer versions. Since
most companies are hesitant to change their development
process as soon as a newer version is out, it is necessary
to maintain backwards compatibility. For example, our
industrial partners use Matlab 2010b while most of our
development is conducted in Matlab 2013b. To maintain
backwards compatibility, when using a Matlab command,
developers check when the command was introduced to
the Matlab environment. An if statement on the version
of Matlab is utilized to ensure that the commands are
compatible. For example, S-TALIRO includes an option
to set the seed for the random number generator to enable
users to reproduce testing and verification results. A
Matlab command that can be used to set the seed for the
random number generator is rng. However, this command
was introduced in Matlab 2011a (version 7.12). As a
result, any users with older versions of Matlab would
not be able to use the tool. To fix the issue, for any ear-
lier versions of Matlab, developers use the RandStream
command.

Another challenge was faced when adding support for
the Matlab Parallel Computing toolbox in S-TALIRO.
The toolbox enables users to conduct simulations and
robustness computations in parallel. Initially, developers
only added a check for whether the toolbox is installed.
However, not only should the toolbox be installed, but
also licensed. A company might only have a limited
number of licenses. Once Matlab starts for a user, a
license key is checked out and is not checked back in
until the Matlab session is ended. A situation can easily
arise where there are not a sufficient number of licenses.
Therefore, a check on the license had to be added before
utilizing the parallel toolbox.

VI. CONCLUSION AND FUTURE WORK

This article has presented an up-to-date overview
of the semi-formal monitoring, testing and verification
tool S-TALIRO. The main functionalities of the tool
are presented. The article follows with a discussion on
challenges faced in incorporating MTL specifications
in the industry and proposes a graphical formalism to
facilitate its use. The formalism enables users to visualize
the event and time based components of specifications.
Also, it enables non-expert users to develop MTL spec-
ifications. The article continues with a discussion on the
modularity of S-TALIRO and the challenges faced in the
development of the tool.

As future work, the authors will finalize the de-
velopment of the visual specification tool and conduct
user studies to measure the effects of the proposed
approach. Also, the authors will work on including the
Until operator in the formalism without deteriorating the
usability of the tool. This would extend the set of useful
formal specifications that can be developed using this
graphical formalism.

ACKNOWLEDGMENT

The authors would like to thank Kangjin Kim for
the useful discussions. This work was partially supported
under NSF awards CNS 1116136, IIP-0856090 and the
NSF I/UCRC Center for Embedded Systems.

REFERENCES

[1] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivancic, and
A. Gupta. Probabilistic temporal logic falsification of cyber-
physical systems. ACM Transactions on Embedded Computing
Systems, 12(s2), May 2013.

[2] H. Abbas, B. Hoxha, G. Fainekos, J. V. Deshmukh, J. Kapinski,
and K. Ueda. Conformance testing as falsification for cyber-
physical systems. Technical Report arXiv:1401.5200, January
2014.

[3] H. Abbas, B. Hoxha, G. Fainekos, and K. Ueda. Robustness-
guided temporal logic testing and verification for stochastic
cyber-physical systems. In The 4th Annual IEEE International
Conference on CYBER Technology in Automation, Control, and
Intelligent Systems, 2014.

[4] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero. Visual
timed event scenarios. In Proceedings of the 26th International
Conference on Software Engineering, pages 168–177. IEEE
Computer Society, 2004.

[5] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankara-
narayanan. S-taliro: A tool for temporal logic falsification for
hybrid systems. In Tools and algorithms for the construction
and analysis of systems, volume 6605 of LNCS, pages 254–
257. Springer, 2011.

9



[6] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric
identification of temporal properties. In Runtime Verification,
volume 7186 of LNCS, pages 147–160. Springer, 2012.

[7] M. Autili, P. Inverardi, and P. Pelliccione. Graphical scenarios
for specifying temporal properties: an automated approach.
Automated Software Engineering, 14(3):293–340, 2007.

[8] D. A. Basin, F. Klaedtke, and E. Zalinescu. Algorithms
for monitoring real-time properties. In Runtime Verification,
volume 7186 of LNCS, pages 260–275. Springer, 2011.

[9] X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An
analyzer for non-linear hybrid systems. In Computer-Aided
Verification (CAV), volume 8044 of Lecture Notes in Computer
Science, pages 258–263. Springer-Verlag, 2013.

[10] A. Chutinan and K. R. Butts. Dynamic analysis of hybrid
system models for design validation. Technical report, Ford
Motor Company, 2002.

[11] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikucionis,
D. B. Poulsen, and S. Sedwards. Statistical model checking for
stochastic hybrid systems. In Proceedings First International
Workshop on Hybrid Systems and Biology, number 92 in
EPTCS, pages 122–136, 2012.

[12] Y. Deng, A. Rajhans, and A. A. Julius. Strong: A trajectory-
based verification toolbox for hybrid systems. In Quantitative
Evaluation of Systems, pages 165–168. Springer, 2013.

[13] A. Dokhanchi, B. Hoxha, and G. Fainekos. On-line monitoring
for temporal logic robustness. In Runtime Verification, volume
8734 of LNCS, pages 231–246. Springer, 2014.

[14] A. Donze. Breach, a toolbox for verification and parameter
synthesis of hybrid systems. In Computer Aided Verification,
volume 6174 of LNCS, pages 167–170. Springer, 2010.

[15] G. Fainekos and G. Pappas. Robustness of temporal logic spec-
ifications for continuous-time signals. Theoretical Computer
Science, 410(42):4262–4291, September 2009.

[16] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel.
Verification of automotive control applications using s-taliro.
In Proceedings of the American Control Conference, 2012.

[17] G. Frehse, C. L. Guernic, A. Donz, S. Cotton, R. Ray, O. Lebel-
tel, R. Ripado, A. Girard, T. Dang, and O. Maler. Spaceex:
Scalable verification of hybrid systems. In Proceedings of the
23d CAV, 2011.

[18] T. A. Henzinger. Temporal specification and verification of
real-time systems. Technical report, DTIC Document, 1991.

[19] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH:
A model checker for hybrid systems. In Proceedings of the
9th International Conference on Computer Aided Verification,
volume 1254 of LNCS, pages 460–463. Springer, 1997.

[20] E. J. Hoffman, W. L. Ebert, M. D. Femiano, H. R. Freeman,
C. J. Gay, C. P. Jones, P. J. Luers, and J. G. Palmer. The near
rendezvous burn anomaly of december 1998. Technical report,
Applied Physics Laboratory, Johns Hopkins University, Nov.
1999.

[21] X. Jin, A. Donzé, J. Deshmukh, and S. A. Seshia. Mining re-
quirements from closed-loop control models. In Proceedings of
the International Conference on Hybrid Systems: Computation
and Control (HSCC), April 2013.

[22] R. Koymans. Specifying real-time properties with metric
temporal logic. Real-Time Systems, 2(4):255–299, 1990.

[23] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps.
Temporal logic for scenario-based specifications. In Tools and

Algorithms for the Construction and Analysis of Systems, pages
445–460. Springer, 2005.

[24] A. Lecchini-Visintini, J. Lygeros, and J. Maciejowski. Stochas-
tic optimization on continuous domains with finite-time guaran-
tees by markov chain monte carlo methods. Automatic Control,
IEEE Transactions on, 55(12):2858 –2863, dec. 2010.

[25] J.-L. Lions, L. Lbeck, J.-L. Fauquembergue, G. Kahn, W. Kub-
bat, S. Levedag, L. Mazzini, D. Merle, and C. O’Halloran.
Ariane 5, flight 501 failure, report by the inquiry board.
Technical report, CNES, July 1996.

[26] O. Maler and D. Nickovic. Monitoring temporal properties
of continuous signals. In Proceedings of FORMATS-FTRTFT,
volume 3253 of LNCS, pages 152–166, 2004.

[27] T. Reinbacher, K. Y. Rozier, and J. Schumann. Temporal-logic
based runtime observer pairs for system health management
of real-time systems. In Proceedings of the 20th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 8413 of LNCS, pages 357–372.
Springer, 2014.

[28] G. Rosu and K. Havelund. Synthesizing dynamic programming
algorithms from linear temporal logic formulae. Technical
report, Research Institute for Advanced Computer Science
(RIACS), 2001.

[29] S. Sankaranarayanan and G. Fainekos. Falsification of temporal
properties of hybrid systems using the cross-entropy method.
In ACM International Conference on Hybrid Systems: Compu-
tation and Control, 2012.

[30] S. Sankaranarayanan and G. Fainekos. Simulating insulin
infusion pump risks by in-silico modeling of the insulin-
glucose regulatory system. In International Conference on
Computational Methods in Systems Biology, 2012. [To Ap-
pear].

[31] B. I. Silva and B. H. Krogh. Formal verification of hybrid
systems using CheckMate: a case study. In Proceedings of the
American Control Conference, volume 3, pages 1679 – 1683,
June 2000.

[32] Simuquest. Enginuity. http://www.simuquest.com/products/
enginuity. Accessed: 2013-10-14.

[33] M. H. Smith, G. J. Holzmann, and K. Etessami. Events and
constraints: A graphical editor for capturing logic requirements
of programs. In Requirements Engineering, 2001. Proceedings.
Fifth IEEE International Symposium on, pages 14–22. IEEE,
2001.

[34] P. Sridhar, S. Mitra, and M. Viswanathan. Verification of
annotated models from executions.

[35] P. Thati and G. Rosu. Monitoring algorithms for metric
temporal logic specifications. In Runtime Verification, volume
113 of ENTCS, pages 145–162. Elsevier, 2005.

[36] H. Yang, B. Hoxha, and G. Fainekos. Querying parametric
temporal logic properties on embedded systems. In Testing
Software and Systems, pages 136–151. Springer, 2012.

[37] P. Zhang, B. Li, and L. Grunske. Timed property sequence
chart. Journal of Systems and Software, 83(3):371–390, 2010.

[38] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical
model checking with application to simulink/stateflow verifica-
tion. In Proceedings of the 13th ACM International Conference
on Hybrid Systems: Computation and Control, pages 243–252,
2010.

10


